Abstract
1. Tacrine (20 microM) induced, like 4-aminoquinoline (4-AQ, 200 microM), the appearance of a population of miniature endplate potentials (m.e.p.ps) with more than twice the normal amplitude or time-to-peak. The times-to-peak of nerve impulse-evoked endplate potentials were not similarly affected. 2. Cholinesterase inhibition by edrophonium (25 microM) did not prevent tacrine or 4-AQ from inducing this population of m.e.p.ps. 3. Nerve-muscle preparations in which the normal calcium-sensitive quantal release of acetylcholine had been blocked by botulinum neurotoxin type A also responded to tacrine by an increase in the frequency of giant or slow m.e.p.ps. 4. Reduction of the temperature from 30 degrees to 14 degrees C reduced the frequency of giant or slow m.e.p.ps induced either by tacrine or by 4-AQ. A similar effect was obtained by colchicine (5 mM). This supports the idea that proximo-distal axonal transport is required for the secretory activity. 5. The neurosecretion evoked by tacrine could explain the therapeutic effects of the drug claimed in the treatment of Alzheimer's type of dementia.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ambache N. The peripheral action of Cl. botulinum toxin. J Physiol. 1949 Mar 15;108(2):127–141. [PMC free article] [PubMed] [Google Scholar]
- Ashford J. W., Sherman K. A., Kumar V. Advances in Alzheimer therapy: cholinesterase inhibitors. Neurobiol Aging. 1989 Jan-Feb;10(1):99–105. doi: 10.1016/s0197-4580(89)80017-x. [DOI] [PubMed] [Google Scholar]
- BARSTAD J. A. Presynaptic effect of the neuro-muscular transmitter. Experientia. 1962 Dec 15;18:579–580. doi: 10.1007/BF02172193. [DOI] [PubMed] [Google Scholar]
- Bennett M. R., McLachlan E. M., Taylor R. S. The formation of synapses in reinnervated mammalian striated muscle. J Physiol. 1973 Sep;233(3):481–500. doi: 10.1113/jphysiol.1973.sp010319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colméus C., Gomez S., Molgó J., Thesleff S. Discrepancies between spontaneous and evoked synaptic potentials at normal, regenerating and botulinum toxin poisoned mammalian neuromuscular junctions. Proc R Soc Lond B Biol Sci. 1982 Apr 22;215(1198):63–74. doi: 10.1098/rspb.1982.0028. [DOI] [PubMed] [Google Scholar]
- Ding R., Jansen J. K., Laing N. G., Tønnesen H. The innervation of skeletal muscles in chickens curarized during early development. J Neurocytol. 1983 Dec;12(6):887–919. doi: 10.1007/BF01153341. [DOI] [PubMed] [Google Scholar]
- Dolly J. O., Lande S., Wray D. W. The effects of in vitro application of purified botulinum neurotoxin at mouse motor nerve terminals. J Physiol. 1987 May;386:475–484. doi: 10.1113/jphysiol.1987.sp016546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glavinović M. I. Voltage clamping of unparalysed cut rat diaphragm for study of transmitter release. J Physiol. 1979 May;290(2):467–480. doi: 10.1113/jphysiol.1979.sp012784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hume R. I., Role L. W., Fischbach G. D. Acetylcholine release from growth cones detected with patches of acetylcholine receptor-rich membranes. Nature. 1983 Oct 13;305(5935):632–634. doi: 10.1038/305632a0. [DOI] [PubMed] [Google Scholar]
- KATZ B., THESLEFF S. On the factors which determine the amplitude of the miniature end-plate potential. J Physiol. 1957 Jul 11;137(2):267–278. doi: 10.1113/jphysiol.1957.sp005811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim Y. I., Lømo T., Lupa M. T., Thesleff S. Miniature end-plate potentials in rat skeletal muscle poisoned with botulinum toxin. J Physiol. 1984 Nov;356:587–599. doi: 10.1113/jphysiol.1984.sp015484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molgó J., Gomez S., Polak R. L., Thesleff S. Giant miniature endplate potentials induced by 4-aminoquinoline. Acta Physiol Scand. 1982 Jun;115(2):201–207. doi: 10.1111/j.1748-1716.1982.tb07066.x. [DOI] [PubMed] [Google Scholar]
- Molgó J., Thesleff S. 4-aminoquinoline-induced 'giant' miniature endplate potentials at mammalian neuromuscular junctions. Proc R Soc Lond B Biol Sci. 1982 Jan 22;214(1195):229–244. doi: 10.1098/rspb.1982.0006. [DOI] [PubMed] [Google Scholar]
- Ochs S. Trophic functions of the neuron. 3. Mechanisms of neurotrophic interactions. Systems of material transport in nerve fibers (axoplasmic transport) related to nerve function and trophic control. Ann N Y Acad Sci. 1974 Mar 22;228(0):202–223. doi: 10.1111/j.1749-6632.1974.tb20511.x. [DOI] [PubMed] [Google Scholar]
- Robinson T. N., De Souza R. J., Cross A. J., Green A. R. The mechanism of tetrahydroaminoacridine-evoked release of endogenous 5-hydroxytryptamine and dopamine from rat brain tissue prisms. Br J Pharmacol. 1989 Dec;98(4):1127–1136. doi: 10.1111/j.1476-5381.1989.tb12656.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Summers W. K., Majovski L. V., Marsh G. M., Tachiki K., Kling A. Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type. N Engl J Med. 1986 Nov 13;315(20):1241–1245. doi: 10.1056/NEJM198611133152001. [DOI] [PubMed] [Google Scholar]
- Summers W. K., Viesselman J. O., Marsh G. M., Candelora K. Use of THA in treatment of Alzheimer-like dementia: pilot study in twelve patients. Biol Psychiatry. 1981 Feb;16(2):145–153. [PubMed] [Google Scholar]
- Thesleff S. Different kinds of acetylcholine release from the motor nerve. Int Rev Neurobiol. 1986;28:59–88. doi: 10.1016/s0074-7742(08)60106-3. [DOI] [PubMed] [Google Scholar]
- Thesleff S., Molgó J., Lundh H. Botulinum toxin and 4-aminoquinoline induce a similar abnormal type of spontaneous quantal transmitter release at the rat neuromuscular junction. Brain Res. 1983 Mar 28;264(1):89–97. doi: 10.1016/0006-8993(83)91123-x. [DOI] [PubMed] [Google Scholar]
- Young S. H., Poo M. M. Spontaneous release of transmitter from growth cones of embryonic neurones. Nature. 1983 Oct 13;305(5935):634–637. doi: 10.1038/305634a0. [DOI] [PubMed] [Google Scholar]
