Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 Dec;101(4):803–808. doi: 10.1111/j.1476-5381.1990.tb14161.x

Electrophysiological effects of AFD-21 and AFD-19, new antiarrhythmic compounds on papillary muscles and single ventricular myocytes isolated from guinea-pig hearts.

I Kodama 1, K Kamiya 1, T Kawamura 1, R Suzuki 1, J Toyama 1
PMCID: PMC1917845  PMID: 2085705

Abstract

1. The effects of AFD-21, a newly synthesized antiarrhythmic compound, and AFD-19, its active metabolite, on transmembrane action potentials were examined in right ventricular papillary muscles and single ventricular myocytes isolated from guinea-pig hearts. 2. In papillary muscles, AFD-21 10(-5) M caused a slight prolongation of action potential duration (APD), while AFD-19 above 10(-6) M shortened APD in a dose-dependent manner. 3. Both AFD-21 and AFD-19 above 10(-6) M caused a significant and dose-dependent decrease in the maximum upstroke velocity (Vmax) of the action potential without affecting the resting membrane potential. 4. In the presence of AFD-21 or AFD-19, trains of stimuli at rates greater than or equal to 0.2 Hz led to an exponential decline in Vmax. This use-dependent block was enhanced at higher stimulation frequencies. A time constant for the recovery of Vmax from the use-dependent block was 2.9 s for AFD-21 and 3.6s for AFD-19. 5. The curves relating membrane potential and Vmax were shifted by AFD-21 (10(-5) M), or AFD-19 (10(-5) M) to the direction of more negative potentials by 5.3 mV and 5.1 mV respectively. 6. In single ventricular myocytes treated with AFD-21 (10(-5) M) or AFD-19 (10(-5) M), Vmax of test action potentials preceded by conditioning clamp pulses to 0 mV was decreased progressively as the clamp pulse duration was prolonged.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
803

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Campbell T. J. Importance of physico-chemical properties in determining the kinetics of the effects of Class I antiarrhythmic drugs on maximum rate of depolarization in guinea-pig ventricle. Br J Pharmacol. 1983 Sep;80(1):33–40. doi: 10.1111/j.1476-5381.1983.tb11046.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Courtney K. R. Why do some drugs preferentially block open sodium channels? J Mol Cell Cardiol. 1988 Jun;20(6):461–464. doi: 10.1016/s0022-2828(88)80073-7. [DOI] [PubMed] [Google Scholar]
  3. Ebihara L., Johnson E. A. Fast sodium current in cardiac muscle. A quantitative description. Biophys J. 1980 Nov;32(2):779–790. doi: 10.1016/S0006-3495(80)85016-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gintant G. A., Hoffman B. F., Naylor R. E. The influence of molecular form of local anesthetic-type antiarrhythmic agents on reduction of the maximum upstroke velocity of canine cardiac Purkinje fibers. Circ Res. 1983 Jun;52(6):735–746. doi: 10.1161/01.res.52.6.735. [DOI] [PubMed] [Google Scholar]
  5. Grant A. O., Starmer C. F., Strauss H. C. Antiarrhythmic drug action. Blockade of the inward sodium current. Circ Res. 1984 Oct;55(4):427–439. doi: 10.1161/01.res.55.4.427. [DOI] [PubMed] [Google Scholar]
  6. Hondeghem L. M., Katzung B. G. Antiarrhythmic agents: the modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. Annu Rev Pharmacol Toxicol. 1984;24:387–423. doi: 10.1146/annurev.pa.24.040184.002131. [DOI] [PubMed] [Google Scholar]
  7. Hondeghem L. M., Katzung B. G. Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta. 1977 Nov 14;472(3-4):373–398. doi: 10.1016/0304-4157(77)90003-x. [DOI] [PubMed] [Google Scholar]
  8. Hondeghem L., Katzung B. G. Test of a model of antiarrhythmic drug action. Effects of quinidine and lidocaine on myocardial conduction. Circulation. 1980 Jun;61(6):1217–1224. doi: 10.1161/01.cir.61.6.1217. [DOI] [PubMed] [Google Scholar]
  9. Kodama I., Honjo H., Kamiya K., Toyama J. Two types of sodium channel block by class-I antiarrhythmic drugs studied by using Vmax of action potential in single ventricular myocytes. J Mol Cell Cardiol. 1990 Jan;22(1):1–12. doi: 10.1016/0022-2828(90)90967-7. [DOI] [PubMed] [Google Scholar]
  10. Kodama I., Kondo N., Shibata S., Yamada K. Effects of dimethylpropranolol (UM-272) on the electrophysiological properties of guinea-pig ventricular muscles. J Pharmacol Exp Ther. 1985 Aug;234(2):507–514. [PubMed] [Google Scholar]
  11. Kodama I., Toyama J., Takanaka C., Yamada K. Block of activated and inactivated sodium channels by class-I antiarrhythmic drugs studied by using the maximum upstroke velocity (Vmax) of action potential in guinea-pig cardiac muscles. J Mol Cell Cardiol. 1987 Apr;19(4):367–377. doi: 10.1016/s0022-2828(87)80582-5. [DOI] [PubMed] [Google Scholar]
  12. Kojima M., Ban T. Effects of AFD-21, a new class I antiarrhythmic agent, and AFD-19, its active metabolite, on the maximal rate of rise of action potentials in guinea pig papillary muscles: dependence on time, voltage, and action potential duration. J Cardiovasc Pharmacol. 1989 Mar;13(3):483–493. doi: 10.1097/00005344-198903000-00018. [DOI] [PubMed] [Google Scholar]
  13. Mandel W. J., Hayakawa H., Vyden J. K., Carvalho M., Parmley W. W., Corday E. Diphenidol: a new agent for the treatment of digitalis-induced arrhythmias. Electrophysiologic and hemodynamic studies. Am J Cardiol. 1972 Jul 11;30(1):67–73. doi: 10.1016/0002-9149(72)90127-0. [DOI] [PubMed] [Google Scholar]
  14. Toyama J., Kamiya K., Kodama I., Yamada K. Frequency- and voltage-dependent effects of aprindine on the upstroke velocity of action potential in guinea pig ventricular muscles. J Cardiovasc Pharmacol. 1987 Feb;9(2):165–172. doi: 10.1097/00005344-198702000-00007. [DOI] [PubMed] [Google Scholar]
  15. Vaughan Williams E. M. A classification of antiarrhythmic actions reassessed after a decade of new drugs. J Clin Pharmacol. 1984 Apr;24(4):129–147. doi: 10.1002/j.1552-4604.1984.tb01822.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES