Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 Dec;101(4):932–936. doi: 10.1111/j.1476-5381.1990.tb14183.x

A salivary vasodilator in the blood-sucking bug, Rhodnius prolixus.

J M Ribeiro 1, O Marinotti 1, R Gonzales 1
PMCID: PMC1917865  PMID: 2085715

Abstract

1. Salivary gland homogenates of the blood-sucking bug, Rhodnius prolixus induced transient, dose-dependent relaxation of rabbit aortic preparations pre-constricted with 200 ng ml-1 noradrenaline, 1 microgram ml-1 histamine or 20 ng ml-1 angiotensin II. Such relaxations were less marked when the aorta was constricted by 60 mM KC1. These effects were observed with as little as 0.2 microgram ml-1 of crude salivary gland protein. 2. The vasodilator effect was endothelium-independent, abolished by 50 microM hydroquinone or 50 microM methylene blue, and potentiated by 30 mu ml-1 superoxide dismutase. 3. Salivary homogenates generated a coloured compound when reacted with sulfanilic acid in the presence of N-(1-naphthyl)-ethylediamine, indicating the presence of reactive nitrogen groups, equivalent to 35 +/- 3 ng of sodium nitrite per pair of glands. 4. Molecular sieving high performance liquid chromatography of salivary gland homogenates generated a single peak of vasorelaxant activity which coincided with the presence of platelet antiaggregating and spasmolytic (guinea-pig ileum contracted with histamine) activities, as well as with reactive nitrogen groups. 5. It is concluded that a protein of molecular weight 16.500 daltons in the salivary glands of R. prolixus contains reactive nitrogen groups which assist the bug during a blood meal. It is suggested that saliva of blood sucking anthropods is a natural resource of novel pharmacological activities.

Full text

PDF
932

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azuma H., Ishikawa M., Sekizaki S. Endothelium-dependent inhibition of platelet aggregation. Br J Pharmacol. 1986 Jun;88(2):411–415. doi: 10.1111/j.1476-5381.1986.tb10218.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BORN G. V., CROSS M. J. THE AGGREGATION OF BLOOD PLATELETS. J Physiol. 1963 Aug;168:178–195. doi: 10.1113/jphysiol.1963.sp007185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buga G. M., Gold M. E., Wood K. S., Chaudhuri G., Ignarro L. J. Endothelium-derived nitric oxide relaxes nonvascular smooth muscle. Eur J Pharmacol. 1989 Feb 14;161(1):61–72. doi: 10.1016/0014-2999(89)90180-5. [DOI] [PubMed] [Google Scholar]
  4. Edman J. D., Webber L. A., Schmid A. A. Effect of host defenses on the feeding pattern of Culex nigripalpus when offered a choice of blood sources. J Parasitol. 1974 Oct;60(5):874–883. [PubMed] [Google Scholar]
  5. Gruetter C. A., Barry B. K., McNamara D. B., Gruetter D. Y., Kadowitz P. J., Ignarro L. Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine. J Cyclic Nucleotide Res. 1979;5(3):211–224. [PubMed] [Google Scholar]
  6. Gruetter C. A., Barry B. K., McNamara D. B., Kadowitz P. J., Ignarro L. J. Coronary arterial relaxation and guanylate cyclase activation by cigarette smoke, N'-nitrosonornicotine and nitric oxide. J Pharmacol Exp Ther. 1980 Jul;214(1):9–15. [PubMed] [Google Scholar]
  7. Gryglewski R. J., Palmer R. M., Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature. 1986 Apr 3;320(6061):454–456. doi: 10.1038/320454a0. [DOI] [PubMed] [Google Scholar]
  8. HELLMANN K., HAWKINS R. I. ANTICOAGULANT AND FIBRINOLYTIC ACTIVITIES FROM RHODNIUS PROLIXUS STAL. Nature. 1964 Mar 7;201:1008–1009. doi: 10.1038/2011008a0. [DOI] [PubMed] [Google Scholar]
  9. Hellmann K., Hawkins R. I. Prolixins-S and prolixin-G; two anticoagulants from Rhodnius prolixus Stål. Nature. 1965 Jul 17;207(994):265–267. doi: 10.1038/207265a0. [DOI] [PubMed] [Google Scholar]
  10. Ignarro L. J., Buga G. M., Byrns R. E., Wood K. S., Chaudhuri G. Endothelium-derived relaxing factor and nitric oxide possess identical pharmacologic properties as relaxants of bovine arterial and venous smooth muscle. J Pharmacol Exp Ther. 1988 Jul;246(1):218–226. [PubMed] [Google Scholar]
  11. Ignarro L. J., Buga G. M., Wood K. S., Byrns R. E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269. doi: 10.1073/pnas.84.24.9265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ignarro L. J., Kadowitz P. J. The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation. Annu Rev Pharmacol Toxicol. 1985;25:171–191. doi: 10.1146/annurev.pa.25.040185.001131. [DOI] [PubMed] [Google Scholar]
  13. Karaki H. Use of tension measurements to delineate the mode of action of vasodilators. J Pharmacol Methods. 1987 Aug;18(1):1–21. doi: 10.1016/0160-5402(87)90013-1. [DOI] [PubMed] [Google Scholar]
  14. LAVOIPIERRE M. M., DICKERSON G., GORDON R. M. Studies on the methods of feeding of blood-sucking arthropods. I. The manner in which triatomine bugs obtain their blood-meal, as observed in the tissues of the living rodent, with some remarks on the effects of the bite on human volunteers. Ann Trop Med Parasitol. 1959 Jun;53:235–250. [PubMed] [Google Scholar]
  15. Moncada S., Palmer R. M., Higgs E. A. The discovery of nitric oxide as the endogenous nitrovasodilator. Hypertension. 1988 Oct;12(4):365–372. doi: 10.1161/01.hyp.12.4.365. [DOI] [PubMed] [Google Scholar]
  16. Rapoport R. M., Murad F. Endothelium-dependent and nitrovasodilator-induced relaxation of vascular smooth muscle: role of cyclic GMP. J Cyclic Nucleotide Protein Phosphor Res. 1983;9(4-5):281–296. [PubMed] [Google Scholar]
  17. Ribeiro J. M., Garcia E. S. Platelet antiaggregating activity in the salivary secretion of the blood sucking bug Rhodnius prolixus. Experientia. 1981 Apr 15;37(4):384–386. doi: 10.1007/BF01959876. [DOI] [PubMed] [Google Scholar]
  18. Ribeiro J. M., Makoul G. T., Levine J., Robinson D. R., Spielman A. Antihemostatic, antiinflammatory, and immunosuppressive properties of the saliva of a tick, Ixodes dammini. J Exp Med. 1985 Feb 1;161(2):332–344. doi: 10.1084/jem.161.2.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ribeiro J. M. Role of saliva in blood-feeding by arthropods. Annu Rev Entomol. 1987;32:463–478. doi: 10.1146/annurev.en.32.010187.002335. [DOI] [PubMed] [Google Scholar]
  20. Ribeiro J. M., Rossignol P. A., Spielman A. Role of mosquito saliva in blood vessel location. J Exp Biol. 1984 Jan;108:1–7. doi: 10.1242/jeb.108.1.1. [DOI] [PubMed] [Google Scholar]
  21. Ribeiro J. M., Vachereau A., Modi G. B., Tesh R. B. A novel vasodilatory peptide from the salivary glands of the sand fly Lutzomyia longipalpis. Science. 1989 Jan 13;243(4888):212–214. doi: 10.1126/science.2783496. [DOI] [PubMed] [Google Scholar]
  22. Ribeiro J. M. Vector saliva and its role in parasite transmission. Exp Parasitol. 1989 Jul;69(1):104–106. doi: 10.1016/0014-4894(89)90177-x. [DOI] [PubMed] [Google Scholar]
  23. Sarkis J. J., Guimarães J. A., Ribeiro J. M. Salivary apyrase of Rhodnius prolixus. Kinetics and purification. Biochem J. 1986 Feb 1;233(3):885–891. doi: 10.1042/bj2330885. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES