Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Jul;71(7):5473–5480. doi: 10.1128/jvi.71.7.5473-5480.1997

Immunogenicity of a contiguous T-B synthetic epitope of the A/PR/8/34 influenza virus.

T D Brumeanu 1, S Casares 1, A Bot 1, S Bot 1, C A Bona 1
PMCID: PMC191788  PMID: 9188620

Abstract

A contiguously linked T-B synthetic viral epitope (110HA120-150HA159,T-B) was investigated for its potency in inducing humoral and cellular immune responses in vivo. The T-cell epitope 110HA120 corresponds to the site 1 hemagglutinin (HA) of the A/PR/8/34 (PR8) influenza virus and is recognized by CD4 T cells in association with I-Ed class II major histocompatibility complex molecules. The 150HA159 represents a major B-cell epitope of the HA protein. T-B dipeptide emulsified in Freund's complete adjuvant was able to induce strong antiviral antibody titers and a high frequency of specific T-cell precursors after a single inoculation in BALB/c mice. In contrast, immunization under identical conditions with equimolar mixtures of T and B peptides did not elicit antibody titers or a cellular immune response. As indicated by the isotypes of antiviral antibodies, the T-B dipeptide preferentially induced a Th1-like immune response. Challenge with T-B dipeptide, but not with T or B peptide alone, stimulated peptide-specific T memory cells in mice previously primed with PR8 virus or with T-B dipeptide. As a consequence, 71 and 57% of these mice, respectively, survived infection with two 100% lethal doses of PR8 virus. Our results suggest that, inasmuch as contiguity between T- and B-cell epitopes provides enough signaling capacity to trigger the mechanisms of T-B-cell cooperation in vivo, a T-B contiguous epitope may well represent a minimal built-in subunit vaccine. Aside from their potential bioavailability, the T-B contiguous epitopes may also represent attractive tools for investigating the molecular mechanisms of T-B-cell cooperation responsible for antiviral protection.

Full Text

The Full Text of this article is available as a PDF (264.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan W., Tabi Z., Cleary A., Doherty P. C. Cellular events in the lymph node and lung of mice with influenza. Consequences of depleting CD4+ T cells. J Immunol. 1990 May 15;144(10):3980–3986. [PubMed] [Google Scholar]
  2. Arnon R., Maron E., Sela M., Anfinsen C. B. Antibodies reactive with native lysozyme elicited by a completely synthetic antigen. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1450–1455. doi: 10.1073/pnas.68.7.1450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Babbitt B. P., Allen P. M., Matsueda G., Haber E., Unanue E. R. Binding of immunogenic peptides to Ia histocompatibility molecules. 1985 Sep 26-Oct 2Nature. 317(6035):359–361. doi: 10.1038/317359a0. [DOI] [PubMed] [Google Scholar]
  4. Bernatowicz M. S., Matsueda G. R. Preparation of peptide-protein immunogens using N-succinimidyl bromoacetate as a heterobifunctional crosslinking reagent. Anal Biochem. 1986 May 15;155(1):95–102. doi: 10.1016/0003-2697(86)90231-9. [DOI] [PubMed] [Google Scholar]
  5. Billetta R., Hollingdale M. R., Zanetti M. Immunogenicity of an engineered internal image antibody. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4713–4717. doi: 10.1073/pnas.88.11.4713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bot A., Bot S., Antohi S., Karjalainen K., Bona C. Kinetics of generation and persistence on membrane class II molecules of a viral peptide expressed on foreign and self proteins. J Immunol. 1996 Oct 15;157(8):3436–3442. [PubMed] [Google Scholar]
  7. Brumeanu T. D., Bot A., Bona C. A., Dehazya P., Wolf I., Zaghouani H. Engineering of doubly antigenized immunoglobulins expressing T and B viral epitopes. Immunotechnology. 1996 Jun;2(2):85–95. doi: 10.1016/1380-2933(96)85196-7. [DOI] [PubMed] [Google Scholar]
  8. Brumeanu T. D., Casares S., Harris P. E., Dehazya P., Wolf I., von Boehmer H., Bona C. A. Immunopotency of a viral peptide assembled on the carbohydrate moieties of self immunoglobulins. Nat Biotechnol. 1996 Jun;14(6):722–725. doi: 10.1038/nbt0696-722. [DOI] [PubMed] [Google Scholar]
  9. Brumeanu T. D., Dehazya P., Wolf I., Bona C. A. Enzymatically mediated, glycosidic conjugation of immunoglobulins with viral epitopes. J Immunol Methods. 1995 Jun 28;183(2):185–197. doi: 10.1016/0022-1759(95)00092-o. [DOI] [PubMed] [Google Scholar]
  10. Brumeanu T. D., Kohanski R., Bona C. A., Zaghouani H. A sensitive method to detect defined peptide among those eluted from murine MHC class II molecules. J Immunol Methods. 1993 Mar 15;160(1):65–71. doi: 10.1016/0022-1759(93)90009-v. [DOI] [PubMed] [Google Scholar]
  11. Caton A. J., Brownlee G. G., Yewdell J. W., Gerhard W. The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell. 1982 Dec;31(2 Pt 1):417–427. doi: 10.1016/0092-8674(82)90135-0. [DOI] [PubMed] [Google Scholar]
  12. Deres K., Schild H., Wiesmüller K. H., Jung G., Rammensee H. G. In vivo priming of virus-specific cytotoxic T lymphocytes with synthetic lipopeptide vaccine. Nature. 1989 Nov 30;342(6249):561–564. doi: 10.1038/342561a0. [DOI] [PubMed] [Google Scholar]
  13. DiMarchi R., Brooke G., Gale C., Cracknell V., Doel T., Mowat N. Protection of cattle against foot-and-mouth disease by a synthetic peptide. Science. 1986 May 2;232(4750):639–641. doi: 10.1126/science.3008333. [DOI] [PubMed] [Google Scholar]
  14. Etlinger H. M., Heimer E. P., Trzeciak A., Felix A. M., Gillessen D. Assessment in mice of a synthetic peptide-based vaccine against the sporozoite stage of the human malaria parasite, P. falciparum. Immunology. 1988 Jul;64(3):551–558. [PMC free article] [PubMed] [Google Scholar]
  15. Fiering S., Northrop J. P., Nolan G. P., Mattila P. S., Crabtree G. R., Herzenberg L. A. Single cell assay of a transcription factor reveals a threshold in transcription activated by signals emanating from the T-cell antigen receptor. Genes Dev. 1990 Oct;4(10):1823–1834. doi: 10.1101/gad.4.10.1823. [DOI] [PubMed] [Google Scholar]
  16. Haberman A. M., Moller C., McCreedy D., Gerhard W. U. A large degree of functional diversity exists among helper T cells specific for the same antigenic site of influenza hemagglutinin. J Immunol. 1990 Nov 1;145(9):3087–3094. [PubMed] [Google Scholar]
  17. Herrington D. A., Clyde D. F., Losonsky G., Cortesia M., Murphy J. R., Davis J., Baqar S., Felix A. M., Heimer E. P., Gillessen D. Safety and immunogenicity in man of a synthetic peptide malaria vaccine against Plasmodium falciparum sporozoites. Nature. 1987 Jul 16;328(6127):257–259. doi: 10.1038/328257a0. [DOI] [PubMed] [Google Scholar]
  18. Jacob C. O., Arnon R., Sela M. Effect of carrier on the immunogenic capacity of synthetic cholera vaccine. Mol Immunol. 1985 Dec;22(12):1333–1339. doi: 10.1016/0161-5890(85)90054-9. [DOI] [PubMed] [Google Scholar]
  19. Kirberg J., Baron A., Jakob S., Rolink A., Karjalainen K., von Boehmer H. Thymic selection of CD8+ single positive cells with a class II major histocompatibility complex-restricted receptor. J Exp Med. 1994 Jul 1;180(1):25–34. doi: 10.1084/jem.180.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liu F. T., Zinnecker M., Hamaoka T., Katz D. H. New procedures for preparation and isolation of conjugates of proteins and a synthetic copolymer of D-amino acids and immunochemical characterization of such conjugates. Biochemistry. 1979 Feb 20;18(4):690–693. doi: 10.1021/bi00571a022. [DOI] [PubMed] [Google Scholar]
  21. Lu Y. A., Clavijo P., Galantino M., Shen Z. Y., Liu W., Tam J. P. Chemically unambiguous peptide immunogen: preparation, orientation and antigenicity of purified peptide conjugated to the multiple antigen peptide system. Mol Immunol. 1991 Jun;28(6):623–630. doi: 10.1016/0161-5890(91)90131-3. [DOI] [PubMed] [Google Scholar]
  22. Manivel V., Ramesh R., Panda S. K., Rao K. V. A synthetic peptide spontaneously self-assembles to reconstruct a group-specific, conformational determinant of hepatitis B surface antigen. J Immunol. 1992 Jun 15;148(12):4006–4011. [PubMed] [Google Scholar]
  23. Means G. E., Feeney R. E. Chemical modifications of proteins: history and applications. Bioconjug Chem. 1990 Jan-Feb;1(1):2–12. doi: 10.1021/bc00001a001. [DOI] [PubMed] [Google Scholar]
  24. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  25. Nolan G. P., Fiering S., Nicolas J. F., Herzenberg L. A. Fluorescence-activated cell analysis and sorting of viable mammalian cells based on beta-D-galactosidase activity after transduction of Escherichia coli lacZ. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2603–2607. doi: 10.1073/pnas.85.8.2603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Robey F. A., Fields R. L. Automated synthesis of N-bromoacetyl-modified peptides for the preparation of synthetic peptide polymers, peptide-protein conjugates, and cyclic peptides. Anal Biochem. 1989 Mar;177(2):373–377. doi: 10.1016/0003-2697(89)90068-7. [DOI] [PubMed] [Google Scholar]
  27. Steller H. Mechanisms and genes of cellular suicide. Science. 1995 Mar 10;267(5203):1445–1449. doi: 10.1126/science.7878463. [DOI] [PubMed] [Google Scholar]
  28. Sutcliffe J. G., Shinnick T. M., Green N., Lerner R. A. Antibodies that react with predetermined sites on proteins. Science. 1983 Feb 11;219(4585):660–666. doi: 10.1126/science.6186024. [DOI] [PubMed] [Google Scholar]
  29. Tam J. P., Clavijo P., Lu Y. A., Nussenzweig V., Nussenzweig R., Zavala F. Incorporation of T and B epitopes of the circumsporozoite protein in a chemically defined synthetic vaccine against malaria. J Exp Med. 1990 Jan 1;171(1):299–306. doi: 10.1084/jem.171.1.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tam J. P., Lu Y. A. Vaccine engineering: enhancement of immunogenicity of synthetic peptide vaccines related to hepatitis in chemically defined models consisting of T- and B-cell epitopes. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9084–9088. doi: 10.1073/pnas.86.23.9084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Usuba O., Schulman J. L., Deatly A. M., Bona C. A., Moran T. M. New method for titration of virus infectivity by immunostaining. Viral Immunol. 1990 Fall;3(3):237–241. doi: 10.1089/vim.1990.3.237. [DOI] [PubMed] [Google Scholar]
  32. Walter G., Scheidtmann K. H., Carbone A., Laudano A. P., Doolittle R. F. Antibodies specific for the carboxy- and amino-terminal regions of simian virus 40 large tumor antigen. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5197–5200. doi: 10.1073/pnas.77.9.5197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wiesmüller K. H., Jung G., Gillessen D., Loffl C., Bessler W. G., Böltz T. The antibody response in BALB/c mice to the Plasmodium falciparum circumsporozoite repetitive epitope covalently coupled to synthetic lipopeptide adjuvant. Immunology. 1991 Jan;72(1):109–113. [PMC free article] [PubMed] [Google Scholar]
  34. Zaghouani H., Steinman R., Nonacs R., Shah H., Gerhard W., Bona C. Presentation of a viral T cell epitope expressed in the CDR3 region of a self immunoglobulin molecule. Science. 1993 Jan 8;259(5092):224–227. doi: 10.1126/science.7678469. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES