Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Jan;102(1):85–90. doi: 10.1111/j.1476-5381.1991.tb12136.x

Effect of endothelium removal on the vasoconstrictor response to neuronally released 5-hydroxytryptamine and noradrenaline in the rat isolated mesenteric and femoral arteries.

M Urabe 1, H Kawasaki 1, K Takasaki 1
PMCID: PMC1917880  PMID: 2043934

Abstract

1. The role of the vascular endothelium in the vasoconstrictor response to transmural nerve stimulation (TNS) was studied in isolated ring segments of rat mesenteric and femoral arteries. 2. In both types of artery, TNS (1 to 16 Hz) produced frequency-dependent vasoconstriction, which was abolished by 100 nM tetrodotoxin, 10 microM guanethidine or 10 nM prazosin, indicating that the response was mediated by endogenous noradrenaline (NA) released from noradrenergic nerves. NA-mediated vasoconstriction in response to TNS was significantly potentiated by removal of the endothelium. 3. In the presence of 10 nM prazosin, the reduced vasoconstriction in response to TNS was restored by incubation with 10 microM 5-hydroxytryptamine (5-HT) for 20 min. Restoration of the response to TNS was markedly attenuated by treatment with 10 nM ketanserin, 100 nM tetrodotoxin, or 10 microM guanethidine, indicating that the restored response was mediated by 5-HT released from noradrenergic nerves. Vasoconstriction mediated by 5-HT in response to TNS was not modified by removal of the endothelium. 4. In both types of artery with intact endothelium, treatment with 3 microM methylene blue potentiated the NA-mediated contractile response to TNS, but did not potentiate the 5-HT-mediated response to TNS. 5. In both types of artery, the contractile responses to exogenous NA and 5-HT were potentiated by removal of the endothelium. 6. These results suggest that endothelial cells regulate neurogenic vasoconstriction by releasing endothelium-derived relaxing factor. Furthermore, it appears likely that the response to neuronally released 5-HT is not affected by the endothelium.

Full text

PDF
85

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cocks T. M., Angus J. A. Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature. 1983 Oct 13;305(5935):627–630. doi: 10.1038/305627a0. [DOI] [PubMed] [Google Scholar]
  2. Cohen R. A., Weisbrod R. M. Endothelium inhibits norepinephrine release from adrenergic nerves of rabbit carotid artery. Am J Physiol. 1988 May;254(5 Pt 2):H871–H878. doi: 10.1152/ajpheart.1988.254.5.H871. [DOI] [PubMed] [Google Scholar]
  3. Connor H. E., Feniuk W. Influence of the endothelium on contractile effects of 5-hydroxytryptamine and selective 5-HT agonists in canine basilar artery. Br J Pharmacol. 1989 Jan;96(1):170–178. doi: 10.1111/j.1476-5381.1989.tb11797.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Frank G. W., Bevan J. A. Electrical stimulation causes endothelium-dependent relaxation in lung vessels. Am J Physiol. 1983 Jun;244(6):H793–H798. doi: 10.1152/ajpheart.1983.244.6.H793. [DOI] [PubMed] [Google Scholar]
  5. Furchgott R. F. The role of endothelium in the responses of vascular smooth muscle to drugs. Annu Rev Pharmacol Toxicol. 1984;24:175–197. doi: 10.1146/annurev.pa.24.040184.001135. [DOI] [PubMed] [Google Scholar]
  6. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  7. Garland C. J. Endothelial cells and the electrical and mechanical responses of the rabbit coronary artery to 5-hydroxytryptamine. J Pharmacol Exp Ther. 1985 Apr;233(1):158–162. [PubMed] [Google Scholar]
  8. Griffith T. M., Edwards D. H., Lewis M. J., Henderson A. H. Evidence that cyclic guanosine monophosphate (cGMP) mediates endothelium-dependent relaxation. Eur J Pharmacol. 1985 Jun 7;112(2):195–202. doi: 10.1016/0014-2999(85)90496-0. [DOI] [PubMed] [Google Scholar]
  9. Griffith T. M., Henderson A. H., Edwards D. H., Lewis M. J. Isolated perfused rabbit coronary artery and aortic strip preparations: the role of endothelium-derived relaxant factor. J Physiol. 1984 Jun;351:13–24. doi: 10.1113/jphysiol.1984.sp015228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gruetter C. A., Kadowitz P. J., Ignarro L. J. Methylene blue inhibits coronary arterial relaxation and guanylate cyclase activation by nitroglycerin, sodium nitrite, and amyl nitrite. Can J Physiol Pharmacol. 1981 Feb;59(2):150–156. doi: 10.1139/y81-025. [DOI] [PubMed] [Google Scholar]
  11. Hynes M. R., Dang H., Duckles S. P. Contractile responses to adrenergic nerve stimulation are enhanced with removal of endothelium in rat caudal artery. Life Sci. 1988;42(4):357–365. doi: 10.1016/0024-3205(88)90073-2. [DOI] [PubMed] [Google Scholar]
  12. Ignarro L. J., Burke T. M., Wood K. S., Wolin M. S., Kadowitz P. J. Association between cyclic GMP accumulation and acetylcholine-elicited relaxation of bovine intrapulmonary artery. J Pharmacol Exp Ther. 1984 Mar;228(3):682–690. [PubMed] [Google Scholar]
  13. Jackowski A., Crockard A., Burnstock G. 5-Hydroxytryptamine demonstrated immunohistochemically in rat cerebrovascular nerves largely represents 5-hydroxytryptamine uptake into sympathetic nerve fibres. Neuroscience. 1989;29(2):453–462. doi: 10.1016/0306-4522(89)90072-9. [DOI] [PubMed] [Google Scholar]
  14. Kawasaki H., Takasaki K. Pharmacological characterization of presynaptic alpha-adrenoceptors in the modulation of the 5-hydroxytryptamine release from vascular adrenergic nerves in the rat. Jpn J Pharmacol. 1986 Dec;42(4):561–570. doi: 10.1254/jjp.42.561. [DOI] [PubMed] [Google Scholar]
  15. Kawasaki H., Takasaki K., Saito A., Goto K. Calcitonin gene-related peptide acts as a novel vasodilator neurotransmitter in mesenteric resistance vessels of the rat. Nature. 1988 Sep 8;335(6186):164–167. doi: 10.1038/335164a0. [DOI] [PubMed] [Google Scholar]
  16. Kawasaki H., Takasaki K. Vasoconstrictor response induced by 5-hydroxytryptamine released from vascular adrenergic nerves by periarterial nerve stimulation. J Pharmacol Exp Ther. 1984 Jun;229(3):816–822. [PubMed] [Google Scholar]
  17. Kawasaki H., Urabe M., Takasaki K. Presynaptic alpha 2-adrenoceptor modulation of 5-hydroxytryptamine and noradrenaline release from vascular adrenergic nerves. Eur J Pharmacol. 1989 May 2;164(1):35–43. doi: 10.1016/0014-2999(89)90228-8. [DOI] [PubMed] [Google Scholar]
  18. Lee T. J., Saito A., Berezin I. Vasoactive intestinal polypeptide-like substance: the potential transmitter for cerebral vasodilation. Science. 1984 May 25;224(4651):898–901. doi: 10.1126/science.6719122. [DOI] [PubMed] [Google Scholar]
  19. Lues I., Schümann H. J. Effect of removing the endothelial cells on the reactivity of rat aortic segments to different alpha-adrenoceptor agonists. Naunyn Schmiedebergs Arch Pharmacol. 1984 Dec;328(2):160–163. doi: 10.1007/BF00512066. [DOI] [PubMed] [Google Scholar]
  20. Martin W., Furchgott R. F., Villani G. M., Jothianandan D. Depression of contractile responses in rat aorta by spontaneously released endothelium-derived relaxing factor. J Pharmacol Exp Ther. 1986 May;237(2):529–538. [PubMed] [Google Scholar]
  21. Miyazaki M., Toda N. Endothelium-dependent changes in the response to vasoconstrictor substances of isolated dog mesenteric veins. Jpn J Pharmacol. 1986 Oct;42(2):309–316. doi: 10.1254/jjp.42.309. [DOI] [PubMed] [Google Scholar]
  22. Palmer R. M., Ashton D. S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
  23. Rooke T., Cohen R. A., Verbeuren T. J., Vanhoutte P. M. Non-neurogenic inhibitory effect of electrical impulses in isolated canine coronary arteries. Eur J Pharmacol. 1982 May 21;80(2-3):251–254. doi: 10.1016/0014-2999(82)90063-2. [DOI] [PubMed] [Google Scholar]
  24. Saito A., Lee T. J. Serotonin as an alternative transmitter in sympathetic nerves of large cerebral arteries of the rabbit. Circ Res. 1987 Feb;60(2):220–228. doi: 10.1161/01.res.60.2.220. [DOI] [PubMed] [Google Scholar]
  25. Taylor S. G., Weston A. H. Endothelium-derived hyperpolarizing factor: a new endogenous inhibitor from the vascular endothelium. Trends Pharmacol Sci. 1988 Aug;9(8):272–274. doi: 10.1016/0165-6147(88)90003-x. [DOI] [PubMed] [Google Scholar]
  26. Tesfamariam B., Weisbrod R. M., Cohen R. A. Endothelium inhibits responses of rabbit carotid artery to adrenergic nerve stimulation. Am J Physiol. 1987 Oct;253(4 Pt 2):H792–H798. doi: 10.1152/ajpheart.1987.253.4.H792. [DOI] [PubMed] [Google Scholar]
  27. VAN ROSSUM J. M. Cumulative dose-response curves. II. Technique for the making of dose-response curves in isolated organs and the evaluation of drug parameters. Arch Int Pharmacodyn Ther. 1963;143:299–330. [PubMed] [Google Scholar]
  28. Vanhoutte P. M. Endothelium and control of vascular function. State of the Art lecture. Hypertension. 1989 Jun;13(6 Pt 2):658–667. doi: 10.1161/01.hyp.13.6.658. [DOI] [PubMed] [Google Scholar]
  29. Verbeuren T. J., Jordaens F. H., Bult H., Herman A. G. The endothelium inhibits the penetration of serotonin and norepinephrine in the isolated canine saphenous vein. J Pharmacol Exp Ther. 1988 Jan;244(1):276–282. [PubMed] [Google Scholar]
  30. Verbeuren T. J., Jordaens F. H., Herman A. G. Accumulation and release of [3H]-5-hydroxytryptamine in saphenous veins and cerebral arteries of the dog. J Pharmacol Exp Ther. 1983 Aug;226(2):579–588. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES