Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Jan;102(1):203–209. doi: 10.1111/j.1476-5381.1991.tb12154.x

Effects of hypoxia and metabolic inhibitors on production of prostacyclin and endothelium-derived relaxing factor by pig aortic endothelial cells.

J M Richards 1, I F Gibson 1, W Martin 1
PMCID: PMC1917897  PMID: 1646057

Abstract

1. The content of adenosine triphosphate (ATP) and basal and bradykinin-stimulated production of prostacyclin and endothelium-derived relaxing factor (EDRF) was measured in primary cultures of porcine aortic endothelial cells under normoxic (14.4% O2) and hypoxic (2.8% O2) conditions, and following treatment with rotenone and 2-deoxy glucose, which inhibit oxidative and glycolytic metabolism, respectively. 2. ATP content and basal and bradykinin-stimulated production of prostacyclin were similar under normoxic and hypoxic conditions. EDRF production, assessed as endothelial guanosine 3':5'-cyclic monophosphate (cyclic GMP) content, was also similar under both conditions. 3. Treatment with rotenone (0.3 microM) had no effect on ATP content or basal or bradykinin-stimulated production of prostacyclin or of EDRF, measured as endothelial cyclic GMP content. Elevation of cyclic GMP content by atriopeptin II was also unaffected. 4. Treatment with 2-deoxy glucose (20 mM) in glucose-free Krebs solution lowered ATP content, reduced bradykinin-stimulated production of prostacyclin and abolished the bradykinin-stimulated elevation of cyclic GMP content. Resting production of prostacyclin was unaffected but basal content of cyclic GMP was lowered in some experiments. Elevation of cyclic GMP content by atriopeptin II was abolished. 5. Combined treatment with rotenone (0.3 microM) and 2-deoxy glucose (20 mM) lowered ATP content more than with 2-deoxy glucose alone. Basal production of prostacyclin rose slightly and bradykinin-stimulated production was powerfully inhibited. Basal content of cyclic GMP was unaffected, but bradykinin-stimulated production was abolished. Elevation of cyclic GMP by atriopeptin II was also abolished.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
203

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boulanger C., Schini V. B., Hendrickson H., Vanhoutte P. M. Chronic exposure of cultured endothelial cells to eicosapentaenoic acid potentiates the release of endothelium-derived relaxing factor(s). Br J Pharmacol. 1990 Jan;99(1):176–180. doi: 10.1111/j.1476-5381.1990.tb14673.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Busse R., Pohl U., Kellner C., Klemm U. Endothelial cells are involved in the vasodilatory response to hypoxia. Pflugers Arch. 1983 Apr;397(1):78–80. doi: 10.1007/BF00585175. [DOI] [PubMed] [Google Scholar]
  3. Coburn R. F., Eppinger R., Scott D. P. Oxygen-dependent tension in vascular smooth muscle. Does the endothelium play a role? Circ Res. 1986 Mar;58(3):341–347. doi: 10.1161/01.res.58.3.341. [DOI] [PubMed] [Google Scholar]
  4. De Mey J. G., Vanhoutte P. M. Anoxia and endothelium-dependent reactivity of the canine femoral artery. J Physiol. 1983 Feb;335:65–74. doi: 10.1113/jphysiol.1983.sp014519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dobrina A., Rossi F. Metabolic properties of freshly isolated bovine endothelial cells. Biochim Biophys Acta. 1983 Apr 5;762(2):295–301. doi: 10.1016/0167-4889(83)90084-8. [DOI] [PubMed] [Google Scholar]
  6. Fay F. S. Guinea pig ductus arteriosus. I. Cellular and metabolic basis for oxygen sensitivity. Am J Physiol. 1971 Aug;221(2):470–479. doi: 10.1152/ajplegacy.1971.221.2.470. [DOI] [PubMed] [Google Scholar]
  7. Fishman A. P. Hypoxia on the pulmonary circulation. How and where it acts. Circ Res. 1976 Apr;38(4):221–231. doi: 10.1161/01.res.38.4.221. [DOI] [PubMed] [Google Scholar]
  8. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  9. Gordon J. L., Martin W. Stimulation of endothelial prostacyclin production plays no role in endothelium-dependent relaxation of the pig aorta. Br J Pharmacol. 1983 Sep;80(1):179–186. doi: 10.1111/j.1476-5381.1983.tb11064.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Griffith T. M., Edwards D. H., Henderson A. H. Unstimulated release of endothelium derived relaxing factor is independent of mitochondrial ATP generation. Cardiovasc Res. 1987 Aug;21(8):565–568. doi: 10.1093/cvr/21.8.565. [DOI] [PubMed] [Google Scholar]
  11. Griffith T. M., Edwards D. H., Newby A. C., Lewis M. J., Henderson A. H. Production of endothelium derived relaxant factor is dependent on oxidative phosphorylation and extracellular calcium. Cardiovasc Res. 1986 Jan;20(1):7–12. doi: 10.1093/cvr/20.1.7. [DOI] [PubMed] [Google Scholar]
  12. Gryglewski R. J., Palmer R. M., Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature. 1986 Apr 3;320(6061):454–456. doi: 10.1038/320454a0. [DOI] [PubMed] [Google Scholar]
  13. Hellstrand P., Johansson B., Norberg K. Mechanical, electrical, and biochemical effects of hypoxia and substrate removal on spontaneously active vascular smooth muscle. Acta Physiol Scand. 1977 May;100(1):69–83. doi: 10.1111/j.1748-1716.1977.tb05923.x. [DOI] [PubMed] [Google Scholar]
  14. Hilton R., Eichholtz F. The influence of chemical factors on the coronary circulation. J Physiol. 1925 Mar 31;59(6):413–425. doi: 10.1113/jphysiol.1925.sp002200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Holden W. E., McCall E. Hypoxia-induced contractions of porcine pulmonary artery strips depend on intact endothelium. Exp Lung Res. 1984;7(2):101–112. doi: 10.3109/01902148409069671. [DOI] [PubMed] [Google Scholar]
  16. Johns R. A., Linden J. M., Peach M. J. Endothelium-dependent relaxation and cyclic GMP accumulation in rabbit pulmonary artery are selectively impaired by moderate hypoxia. Circ Res. 1989 Dec;65(6):1508–1515. doi: 10.1161/01.res.65.6.1508. [DOI] [PubMed] [Google Scholar]
  17. KISSANE J. M., ROBINS E. The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system. J Biol Chem. 1958 Jul;233(1):184–188. [PubMed] [Google Scholar]
  18. Kalsner S. The effect of hypoxia on prostaglandin output and on tone in isolated coronary arteries. Can J Physiol Pharmacol. 1977 Aug;55(4):882–887. doi: 10.1139/y77-117. [DOI] [PubMed] [Google Scholar]
  19. Katusic Z. S., Vanhoutte P. M. Anoxic contractions in isolated canine cerebral arteries: contribution of endothelium-derived factors, metabolites of arachidonic acid, and calcium entry. J Cardiovasc Pharmacol. 1986;8 (Suppl 8):S97–101. [PubMed] [Google Scholar]
  20. Kwan Y. W., Wadsworth R. M., Kane K. A. Hypoxia- and endothelium-mediated changes in the pharmacological responsiveness of circumflex coronary artery rings from the sheep. Br J Pharmacol. 1989 Apr;96(4):857–863. doi: 10.1111/j.1476-5381.1989.tb11895.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Leighton B., Curi R., Hussein A., Newsholme E. A. Maximum activities of some key enzymes of glycolysis, glutaminolysis, Krebs cycle and fatty acid utilization in bovine pulmonary endothelial cells. FEBS Lett. 1987 Dec 10;225(1-2):93–96. doi: 10.1016/0014-5793(87)81137-7. [DOI] [PubMed] [Google Scholar]
  22. Madden M. C., Vender R. L., Friedman M. Effect of hypoxia on prostacyclin production in cultured pulmonary artery endothelium. Prostaglandins. 1986 Jun;31(6):1049–1062. doi: 10.1016/0090-6980(86)90208-x. [DOI] [PubMed] [Google Scholar]
  23. Martin W., Villani G. M., Jothianandan D., Furchgott R. F. Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J Pharmacol Exp Ther. 1985 Mar;232(3):708–716. [PubMed] [Google Scholar]
  24. Martin W., White D. G., Henderson A. H. Endothelium-derived relaxing factor and atriopeptin II elevate cyclic GMP levels in pig aortic endothelial cells. Br J Pharmacol. 1988 Jan;93(1):229–239. doi: 10.1111/j.1476-5381.1988.tb11426.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ody C., Junod A. F. Direct toxic effects of paraquat and oxygen on cultured endothelial cells. Lab Invest. 1985 Jan;52(1):77–84. [PubMed] [Google Scholar]
  26. Palacios M., Knowles R. G., Palmer R. M., Moncada S. Nitric oxide from L-arginine stimulates the soluble guanylate cyclase in adrenal glands. Biochem Biophys Res Commun. 1989 Dec 15;165(2):802–809. doi: 10.1016/s0006-291x(89)80037-3. [DOI] [PubMed] [Google Scholar]
  27. Rapoport R. M., Murad F. Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res. 1983 Mar;52(3):352–357. doi: 10.1161/01.res.52.3.352. [DOI] [PubMed] [Google Scholar]
  28. Rubanyi G. M., Vanhoutte P. M. Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J Physiol. 1985 Jul;364:45–56. doi: 10.1113/jphysiol.1985.sp015728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rubanyi G. M., Vanhoutte P. M. Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol. 1986 May;250(5 Pt 2):H822–H827. doi: 10.1152/ajpheart.1986.250.5.H822. [DOI] [PubMed] [Google Scholar]
  30. Rubanyi G., Paul R. J. O2-sensitivity of beta adrenergic responsiveness in isolated bovine and porcine coronary arteries. J Pharmacol Exp Ther. 1984 Sep;230(3):692–698. [PubMed] [Google Scholar]
  31. Voyta J. C., Via D. P., Butterfield C. E., Zetter B. R. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J Cell Biol. 1984 Dec;99(6):2034–2040. doi: 10.1083/jcb.99.6.2034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Warren J. B., Maltby N. H., MacCormack D., Barnes P. J. Pulmonary endothelium-derived relaxing factor is impaired in hypoxia. Clin Sci (Lond) 1989 Dec;77(6):671–676. doi: 10.1042/cs0770671. [DOI] [PubMed] [Google Scholar]
  33. Weir C. J., Gibson I. F., Martin W. Effects of metabolic inhibitors on endothelium-dependent and endothelium-independent vasodilatation of rat and rabbit aorta. Br J Pharmacol. 1991 Jan;102(1):162–166. doi: 10.1111/j.1476-5381.1991.tb12147.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES