Abstract
1. The series of cycloalcohols C6, C7, C8 and C10 have been used to probe the molecular dimensions of a variety of general anaesthetic target sites. 2. The general anaesthetic EC50 concentrations of the cycloalcohols were determined for tadpoles (Xenopus laevis). All of the cycloalcohols tested were found to be potent general anaesthetics (on average EC50/Csat = 0.03). 3. The effects of the cycloalcohols on highly purified luciferase enzymes from fireflies (Photinus pyralis) and bacteria (Vibrio harveyi) were also investigated. Both enzymes were inhibited competitively, with the cycloalcohols competing with firefly luciferin for binding to the firefly enzyme and with n-decanal for binding to the bacterial enzyme. 4. The binding site on the firefly enzyme could accommodate two molecules of cycloalcohols C6 and C7 but only a single molecule of the larger cycloalcohols (C8 and C10), implying a volume of the binding site of about 250 cm3 mol-1. In contrast, the binding site on the bacterial luciferase could bind only a single cycloalcohol molecule between C6 and C10. 5. While all of the cycloalcohols were potent inhibitors of the firefly luciferase enzyme (on average EC50/Csat = 0.015), they were very weak inhibitors of the bacterial luciferase enzyme (on average EC50/Csat = 0.12). Since both enzymes bind long-chain aliphatic n-alcohols tightly, the differing affinities of the cycloalcohols for the two enzymes is probably a consequence of geometrical factors. 6. The cycloalcohols produced very small effects on lipid bilayers. At EC50 concentrations which produce general anaesthesia, lipid bilayer phase transitions were shifted, on average, by only 0.43 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adey G., Wardley-Smith B., White D. Mechanism of inhibition of bacterial luciferase by anaesthetics. Life Sci. 1975 Dec 15;17(12):1849–1854. doi: 10.1016/0024-3205(75)90469-5. [DOI] [PubMed] [Google Scholar]
- Alifimoff J. K., Firestone L. L., Miller K. W. Anaesthetic potencies of primary alkanols: implications for the molecular dimensions of the anaesthetic site. Br J Pharmacol. 1989 Jan;96(1):9–16. doi: 10.1111/j.1476-5381.1989.tb11777.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Branchini B. R., Marschner T. M., Montemurro A. M. A convenient affinity chromatography-based purification of firefly luciferase. Anal Biochem. 1980 May 15;104(2):386–396. doi: 10.1016/0003-2697(80)90089-5. [DOI] [PubMed] [Google Scholar]
- Cleland W. W. The statistical analysis of enzyme kinetic data. Adv Enzymol Relat Areas Mol Biol. 1967;29:1–32. doi: 10.1002/9780470122747.ch1. [DOI] [PubMed] [Google Scholar]
- Curry S., Lieb W. R., Franks N. P. Effects of general anesthetics on the bacterial luciferase enzyme from Vibrio harveyi: an anesthetic target site with differential sensitivity. Biochemistry. 1990 May 15;29(19):4641–4652. doi: 10.1021/bi00471a020. [DOI] [PubMed] [Google Scholar]
- Dluzewski A. R., Halsey M. J., Simmonds A. C. Membrane interactions with general and local anaesthetics: a review of molecular hypotheses of anaesthesia. Mol Aspects Med. 1983;6(6):461–573. doi: 10.1016/0098-2997(83)90001-8. [DOI] [PubMed] [Google Scholar]
- Elliott J. R., Haydon D. A. The actions of neutral anaesthetics on ion conductances of nerve membranes. Biochim Biophys Acta. 1989 May 9;988(2):257–286. doi: 10.1016/0304-4157(89)90021-x. [DOI] [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Do general anaesthetics act by competitive binding to specific receptors? Nature. 1984 Aug 16;310(5978):599–601. doi: 10.1038/310599a0. [DOI] [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Mapping of general anaesthetic target sites provides a molecular basis for cutoff effects. Nature. 1985 Jul 25;316(6026):349–351. doi: 10.1038/316349a0. [DOI] [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Molecular mechanisms of general anaesthesia. Nature. 1982 Dec 9;300(5892):487–493. doi: 10.1038/300487a0. [DOI] [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Where do general anaesthetics act? Nature. 1978 Jul 27;274(5669):339–342. doi: 10.1038/274339a0. [DOI] [PubMed] [Google Scholar]
- Harris R. A., Groh G. I. Membrane disordering effects of anesthetics are enhanced by gangliosides. Anesthesiology. 1985 Feb;62(2):115–119. doi: 10.1097/00000542-198502000-00003. [DOI] [PubMed] [Google Scholar]
- Hill M. W. The effect of anaesthetic-like molecules on the phase transition in smectic mesophases of dipalmitoyllecithin. I. The normal alcohol up to C equals 9 and three inhalation anaesthetics. Biochim Biophys Acta. 1974 Jul 12;356(1):117–124. doi: 10.1016/0005-2736(74)90299-5. [DOI] [PubMed] [Google Scholar]
- Hymes A. J., Cuppett C. C., Canady W. J. Thermodynamics of alpha-chymotrypsin-inhibitor complex formation. Effects of structural modification of the inhibitor. J Biol Chem. 1969 Feb 25;244(4):637–643. [PubMed] [Google Scholar]
- Jain M. K., Wu N. Y., Wray L. V. Drug-induced phase change in bilayer as possible mode of action of membrane expanding drugs. Nature. 1975 Jun 5;255(5508):494–496. doi: 10.1038/255494a0. [DOI] [PubMed] [Google Scholar]
- Kamaya H., Ueda I., Moore P. S., Eyring H. Antagonism between high pressure and anesthetics in the thermal phase-transition of dipalmitoyl phosphatidylcholine bilayer. Biochim Biophys Acta. 1979 Jan 5;550(1):131–137. doi: 10.1016/0005-2736(79)90121-4. [DOI] [PubMed] [Google Scholar]
- Kita Y., Miller K. W. Partial molar volumes of some 1-alkanols in erythrocyte ghosts and lipid bilayers. Biochemistry. 1982 Jun 8;21(12):2840–2847. doi: 10.1021/bi00541a005. [DOI] [PubMed] [Google Scholar]
- MILES J. L., MOREY E., CRAIN F., GROSS S., SAN JULIAN J. S., CANADY W. J. Inhibition of alpha-chymotrypsin by diethyl ether and certain alcohols: a new type of competitive inhibition. J Biol Chem. 1962 Apr;237:1319–1322. [PubMed] [Google Scholar]
- Middleton A. J., Smith E. B. General anaesthetics and bacterial luminescence. II. The effect of diethyl ether on the in vitro light emission of Vibrio fischeri. Proc R Soc Lond B Biol Sci. 1976 Apr 13;193(1111):173–190. doi: 10.1098/rspb.1976.0038. [DOI] [PubMed] [Google Scholar]
- Miller K. W., Pang K. Y. General anaesthetics can selectively perturb lipid bilayer membranes. Nature. 1976 Sep 16;263(5574):253–255. doi: 10.1038/263253a0. [DOI] [PubMed] [Google Scholar]
- Miller K. W., Paton W. D., Smith E. B. The anaesthetic pressures of certain fluorine-containing gases. Br J Anaesth. 1967 Dec;39(12):910–918. doi: 10.1093/bja/39.12.910. [DOI] [PubMed] [Google Scholar]
- Miller K. W. The nature of the site of general anesthesia. Int Rev Neurobiol. 1985;27:1–61. doi: 10.1016/s0074-7742(08)60555-3. [DOI] [PubMed] [Google Scholar]
- Richards C. D., Martin K., Gregory S., Keightley C. A., Hesketh T. R., Smith G. A., Warren G. B., Metcalfe J. C. Degenerate perturbations of protein structure as the mechanism of anaesthetic action. Nature. 1978 Dec 21;276(5690):775–779. doi: 10.1038/276775a0. [DOI] [PubMed] [Google Scholar]
- Smith R. N., Hansch C. Hydrophobic interaction of small molecules with alpha-chymotrypsin. Biochemistry. 1973 Nov 20;12(24):4924–4937. doi: 10.1021/bi00748a018. [DOI] [PubMed] [Google Scholar]
- Waud D. R. On biological assays involving quantal responses. J Pharmacol Exp Ther. 1972 Dec;183(3):577–607. [PubMed] [Google Scholar]