Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Jan;102(1):79–84. doi: 10.1111/j.1476-5381.1991.tb12135.x

The effects of calcitonin gene-related peptide on submucosal gland secretion and epithelial albumin transport in the ferret trachea in vitro.

S E Webber 1, J C Lim 1, J G Widdicombe 1
PMCID: PMC1917905  PMID: 1710527

Abstract

1. We have examined the effect of calcitonin gene-related peptide (CGRP) on basal mucus volume, lysozyme and albumin outputs from the ferret whole trachea in vitro, and on the outputs produced by methacholine and substance P (SP). We have also examined the effect of inhibiting neutral enkephalinase with thiorphan on the responses to CGRP. 2. CGRP (1-100 nM) produced small concentration-dependent increases in basal mucus volume, lysozyme and albumin outputs. These effect of CGRP were enhanced by thiorphan. The increases in basal outputs with CGRP and the potentiation by thiorphan were considerably less than previously observed with SP and neurokinin A (NKA). CGRP had no significant effect on potential difference (PD) across the trachea. 3. CGRP produced a concentration-dependent inhibition of methacholine- and SP-induced lysozyme output but a concentration-dependent increase in methacholine- and SP-induced albumin output. The effects of CGRP on methacholine-induced lysozyme and albumin outputs were enhanced by thiorphan. CGRP weakly inhibited methacholine-induced mucus volume output and weakly enhanced SP-induced mucus volume output. 4. Thus, CGRP weakly stimulates basal serous cell secretion and epithelial albumin transport, but does not alter epithelial integrity. CGRP inhibits the serous cell secretion due to methacholine or SP, but potentiates the epithelial albumin transport produced by these agents. The interaction between CGRP and other sensory neuropeptides or muscarinic agonists on airway submucosal glands and epithelium may be important in the normal airway and in inflammatory airway diseases where release of sensory neuropeptides is enhanced.

Full text

PDF
79

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brain S. D., Williams T. J. Inflammatory oedema induced by synergism between calcitonin gene-related peptide (CGRP) and mediators of increased vascular permeability. Br J Pharmacol. 1985 Dec;86(4):855–860. doi: 10.1111/j.1476-5381.1985.tb11107.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Breimer L. H., MacIntyre I., Zaidi M. Peptides from the calcitonin genes: molecular genetics, structure and function. Biochem J. 1988 Oct 15;255(2):377–390. doi: 10.1042/bj2550377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cadieux A., Springall D. R., Mulderry P. K., Rodrigo J., Ghatei M. A., Terenghi G., Bloom S. R., Polak J. M. Occurrence, distribution and ontogeny of CGRP immunoreactivity in the rat lower respiratory tract: effect of capsaicin treatment and surgical denervations. Neuroscience. 1986 Oct;19(2):605–627. doi: 10.1016/0306-4522(86)90285-x. [DOI] [PubMed] [Google Scholar]
  4. Gamse R., Saria A. Potentiation of tachykinin-induced plasma protein extravasation by calcitonin gene-related peptide. Eur J Pharmacol. 1985 Aug 7;114(1):61–66. doi: 10.1016/0014-2999(85)90520-5. [DOI] [PubMed] [Google Scholar]
  5. Gatto C., Lussky R. C., Erickson L. W., Berg K. J., Wobken J. D., Johnson D. E. Calcitonin and CGRP block bombesin- and substance P-induced increases in airway tone. J Appl Physiol (1985) 1989 Feb;66(2):573–577. doi: 10.1152/jappl.1989.66.2.573. [DOI] [PubMed] [Google Scholar]
  6. Le Greves P., Nyberg F., Terenius L., Hökfelt T. Calcitonin gene-related peptide is a potent inhibitor of substance P degradation. Eur J Pharmacol. 1985 Sep 24;115(2-3):309–311. doi: 10.1016/0014-2999(85)90706-x. [DOI] [PubMed] [Google Scholar]
  7. Lundberg J. M., Franco-Cereceda A., Hua X., Hökfelt T., Fischer J. A. Co-existence of substance P and calcitonin gene-related peptide-like immunoreactivities in sensory nerves in relation to cardiovascular and bronchoconstrictor effects of capsaicin. Eur J Pharmacol. 1985 Feb 5;108(3):315–319. doi: 10.1016/0014-2999(85)90456-x. [DOI] [PubMed] [Google Scholar]
  8. Mak J. C., Barnes P. J. Autoradiographic localization of calcitonin gene-related peptide (CGRP) binding sites in human and guinea pig lung. Peptides. 1988 Sep-Oct;9(5):957–963. doi: 10.1016/0196-9781(88)90073-3. [DOI] [PubMed] [Google Scholar]
  9. McCormack D. G., Salonen R. O., Barnes P. J. Effect of sensory neuropeptides on canine bronchial and pulmonary vessels in vitro. Life Sci. 1989;45(25):2405–2412. doi: 10.1016/0024-3205(89)90004-0. [DOI] [PubMed] [Google Scholar]
  10. Nakamuta H., Fukuda Y., Koida M., Fujii N., Otaka A., Funakoshi S., Yajima H., Mitsuyasu N., Orlowski R. C. Binding sites of calcitonin gene-related peptide (CGRP): abundant occurrence in visceral organs. Jpn J Pharmacol. 1986 Oct;42(2):175–180. doi: 10.1254/jjp.42.175. [DOI] [PubMed] [Google Scholar]
  11. Palmer J. B., Cuss F. M., Mulderry P. K., Ghatei M. A., Springall D. R., Cadieux A., Bloom S. R., Polak J. M., Barnes P. J. Calcitonin gene-related peptide is localised to human airway nerves and potently constricts human airway smooth muscle. Br J Pharmacol. 1987 May;91(1):95–101. doi: 10.1111/j.1476-5381.1987.tb08987.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Price A. M., Webber S. E., Widdicombe J. G. Transport of albumin by the rabbit trachea in vitro. J Appl Physiol (1985) 1990 Feb;68(2):726–730. doi: 10.1152/jappl.1990.68.2.726. [DOI] [PubMed] [Google Scholar]
  13. Rogers D. F., Belvisi M. G., Aursudkij B., Evans T. W., Barnes P. J. Effects and interactions of sensory neuropeptides on airway microvascular leakage in guinea-pigs. Br J Pharmacol. 1988 Dec;95(4):1109–1116. doi: 10.1111/j.1476-5381.1988.tb11745.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rosenfeld M. G., Mermod J. J., Amara S. G., Swanson L. W., Sawchenko P. E., Rivier J., Vale W. W., Evans R. M. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature. 1983 Jul 14;304(5922):129–135. doi: 10.1038/304129a0. [DOI] [PubMed] [Google Scholar]
  15. Salonen R. O., Webber S. E., Widdicombe J. G. Effects of neuropeptides and capsaicin on the canine tracheal vasculature in vivo. Br J Pharmacol. 1988 Dec;95(4):1262–1270. doi: 10.1111/j.1476-5381.1988.tb11763.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Selsted M. E., Martinez R. J. A simple and ultrasensitive enzymatic assay for the quantitative determination of lysozyme in the picogram range. Anal Biochem. 1980 Nov 15;109(1):67–70. doi: 10.1016/0003-2697(80)90011-1. [DOI] [PubMed] [Google Scholar]
  17. Webber S. E. Receptors mediating the effects of substance P and neurokinin A on mucus secretion and smooth muscle tone of the ferret trachea: potentiation by an enkephalinase inhibitor. Br J Pharmacol. 1989 Dec;98(4):1197–1206. doi: 10.1111/j.1476-5381.1989.tb12665.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Webber S. E., Widdicombe J. G. The effect of vasoactive intestinal peptide on smooth muscle tone and mucus secretion from the ferret trachea. Br J Pharmacol. 1987 May;91(1):139–148. doi: 10.1111/j.1476-5381.1987.tb08992.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Webber S. E., Widdicombe J. G. The transport of albumin across the ferret in vitro whole trachea. J Physiol. 1989 Jan;408:457–472. doi: 10.1113/jphysiol.1989.sp017470. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES