Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Jul;71(7):5505–5511. doi: 10.1128/jvi.71.7.5505-5511.1997

Molecular analysis of the feline immunodeficiency virus protease: generation of a novel form of the protease by autoproteolysis and construction of cleavage-resistant proteases.

G S Laco 1, M C Fitzgerald 1, G M Morris 1, A J Olson 1, S B Kent 1, J H Elder 1
PMCID: PMC191792  PMID: 9188624

Abstract

The feline immunodeficiency virus (FIV) protease is essential for virion maturation and subsequent viral replication in that it cleaves the Gag and Gag/Pol polyproteins at eight sites to release the respective structural proteins and enzymes. During purification of a recombinant FIV protease (PR), we noted that it underwent autoproteolysis (autolysis) to give discrete cleavage products. These additional PR cleavage sites were defined using N-terminal amino acid sequence analysis and mass spectrometry. Protease breakdown products were also found in FIV virions and were of the same apparent molecular weights as the in vitro autolysis products. Four primary PR autolysis sites were blocked via substitution of either the P1 amino acid with a beta-branched amino acid or the P1' amino acid with lysine. Cleavage-resistant PRs which had Km and k(cat) values similar to those of FIV PR were constructed. An autolysis time course determined that blocking all four primary autolysis sites yielded a cleavage-resistant PR which was enzymatically stable. Concomitant with autolysis is the generation of an N-terminally truncated form of the PR (Thr6/PR) which has enhanced stability with respect to that of FIV PR. A structural basis for the Thr6/PR activity is presented, as are the possible roles of autolysis in the viral replication cycle.

Full Text

The Full Text of this article is available as a PDF (731.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baboonian C., Dalgleish A., Bountiff L., Gross J., Oroszlan S., Rickett G., Smith-Burchnell C., Troke P., Merson J. HIV-1 proteinase is required for synthesis of pro-viral DNA. Biochem Biophys Res Commun. 1991 Aug 30;179(1):17–24. doi: 10.1016/0006-291x(91)91327-9. [DOI] [PubMed] [Google Scholar]
  2. Ben-Bassat A., Bauer K., Chang S. Y., Myambo K., Boosman A., Chang S. Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. J Bacteriol. 1987 Feb;169(2):751–757. doi: 10.1128/jb.169.2.751-757.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bryant M. L., Ratner L., Duronio R. J., Kishore N. S., Devadas B., Adams S. P., Gordon J. I. Incorporation of 12-methoxydodecanoate into the human immunodeficiency virus 1 gag polyprotein precursor inhibits its proteolytic processing and virus production in a chronically infected human lymphoid cell line. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2055–2059. doi: 10.1073/pnas.88.6.2055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dunn B. M., Gustchina A., Wlodawer A., Kay J. Subsite preferences of retroviral proteinases. Methods Enzymol. 1994;241:254–278. doi: 10.1016/0076-6879(94)41068-2. [DOI] [PubMed] [Google Scholar]
  5. Elder J. H., Schnölzer M., Hasselkus-Light C. S., Henson M., Lerner D. A., Phillips T. R., Wagaman P. C., Kent S. B. Identification of proteolytic processing sites within the Gag and Pol polyproteins of feline immunodeficiency virus. J Virol. 1993 Apr;67(4):1869–1876. doi: 10.1128/jvi.67.4.1869-1876.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gustchina A., Kervinen J., Powell D. J., Zdanov A., Kay J., Wlodawer A. Structure of equine infectious anemia virus proteinase complexed with an inhibitor. Protein Sci. 1996 Aug;5(8):1453–1465. doi: 10.1002/pro.5560050802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henderson L. E., Bowers M. A., Sowder R. C., 2nd, Serabyn S. A., Johnson D. G., Bess J. W., Jr, Arthur L. O., Bryant D. K., Fenselau C. Gag proteins of the highly replicative MN strain of human immunodeficiency virus type 1: posttranslational modifications, proteolytic processings, and complete amino acid sequences. J Virol. 1992 Apr;66(4):1856–1865. doi: 10.1128/jvi.66.4.1856-1865.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. James M. N., Sielecki A. R. Molecular structure of an aspartic proteinase zymogen, porcine pepsinogen, at 1.8 A resolution. Nature. 1986 Jan 2;319(6048):33–38. doi: 10.1038/319033a0. [DOI] [PubMed] [Google Scholar]
  9. Karacostas V., Wolffe E. J., Nagashima K., Gonda M. A., Moss B. Overexpression of the HIV-1 gag-pol polyprotein results in intracellular activation of HIV-1 protease and inhibition of assembly and budding of virus-like particles. Virology. 1993 Apr;193(2):661–671. doi: 10.1006/viro.1993.1174. [DOI] [PubMed] [Google Scholar]
  10. Kohl N. E., Emini E. A., Schleif W. A., Davis L. J., Heimbach J. C., Dixon R. A., Scolnick E. M., Sigal I. S. Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4686–4690. doi: 10.1073/pnas.85.13.4686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kräusslich H. G. Human immunodeficiency virus proteinase dimer as component of the viral polyprotein prevents particle assembly and viral infectivity. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3213–3217. doi: 10.1073/pnas.88.8.3213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kräusslich H. G. Specific inhibitor of human immunodeficiency virus proteinase prevents the cytotoxic effects of a single-chain proteinase dimer and restores particle formation. J Virol. 1992 Jan;66(1):567–572. doi: 10.1128/jvi.66.1.567-572.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Matúz J. Role of mucus in mucosal protection through ethanol and pepsin damage models. Acta Physiol Hung. 1992;80(1-4):189–194. [PubMed] [Google Scholar]
  14. Mildner A. M., Rothrock D. J., Leone J. W., Bannow C. A., Lull J. M., Reardon I. M., Sarcich J. L., Howe W. J., Tomich C. S., Smith C. W. The HIV-1 protease as enzyme and substrate: mutagenesis of autolysis sites and generation of a stable mutant with retained kinetic properties. Biochemistry. 1994 Aug 16;33(32):9405–9413. doi: 10.1021/bi00198a005. [DOI] [PubMed] [Google Scholar]
  15. Olmsted R. A., Slade D. E., Kopta L. A., Poppe S. M., Poel T. J., Newport S. W., Rank K. B., Biles C., Morge R. A., Dueweke T. J. (Alkylamino) piperidine bis(heteroaryl)piperizine analogs are potent, broad-spectrum nonnucleoside reverse transcriptase inhibitors of drug-resistant isolates of human immunodeficiency virus type 1 (HIV-1) and select for drug-resistant variants of HIV-1IIIB with reduced replication phenotypes. J Virol. 1996 Jun;70(6):3698–3705. doi: 10.1128/jvi.70.6.3698-3705.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pedersen N. C., Ho E. W., Brown M. L., Yamamoto J. K. Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science. 1987 Feb 13;235(4790):790–793. doi: 10.1126/science.3643650. [DOI] [PubMed] [Google Scholar]
  17. Poorman R. A., Tomasselli A. G., Heinrikson R. L., Kézdy F. J. A cumulative specificity model for proteases from human immunodeficiency virus types 1 and 2, inferred from statistical analysis of an extended substrate data base. J Biol Chem. 1991 Aug 5;266(22):14554–14561. [PubMed] [Google Scholar]
  18. Rajagopalan T. G., Moore S., Stein W. H. Pepsin from pepsinogen. Preparation and properties. J Biol Chem. 1966 Nov 10;241(21):4940–4950. [PubMed] [Google Scholar]
  19. Roberts M. M., Copeland T. D., Oroszlan S. In situ processing of a retroviral nucleocapsid protein by the viral proteinase. Protein Eng. 1991 Aug;4(6):695–700. doi: 10.1093/protein/4.6.695. [DOI] [PubMed] [Google Scholar]
  20. Rosé J. R., Salto R., Craik C. S. Regulation of autoproteolysis of the HIV-1 and HIV-2 proteases with engineered amino acid substitutions. J Biol Chem. 1993 Jun 5;268(16):11939–11945. [PubMed] [Google Scholar]
  21. Schnölzer M., Rackwitz H. R., Gustchina A., Laco G. S., Wlodawer A., Elder J. H., Kent S. B. Comparative properties of feline immunodeficiency virus (FIV) and human immunodeficiency virus type 1 (HIV-1) proteinases prepared by total chemical synthesis. Virology. 1996 Oct 1;224(1):268–275. doi: 10.1006/viro.1996.0528. [DOI] [PubMed] [Google Scholar]
  22. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  23. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Talbott R. L., Sparger E. E., Lovelace K. M., Fitch W. M., Pedersen N. C., Luciw P. A., Elder J. H. Nucleotide sequence and genomic organization of feline immunodeficiency virus. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5743–5747. doi: 10.1073/pnas.86.15.5743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vaezi M. F., Singh S., Richter J. E. Role of acid and duodenogastric reflux in esophageal mucosal injury: a review of animal and human studies. Gastroenterology. 1995 Jun;108(6):1897–1907. doi: 10.1016/0016-5085(95)90156-6. [DOI] [PubMed] [Google Scholar]
  26. Weber I. T. Comparison of the crystal structures and intersubunit interactions of human immunodeficiency and Rous sarcoma virus proteases. J Biol Chem. 1990 Jun 25;265(18):10492–10496. [PubMed] [Google Scholar]
  27. Welker R., Kottler H., Kalbitzer H. R., Kräusslich H. G. Human immunodeficiency virus type 1 Nef protein is incorporated into virus particles and specifically cleaved by the viral proteinase. Virology. 1996 May 1;219(1):228–236. doi: 10.1006/viro.1996.0240. [DOI] [PubMed] [Google Scholar]
  28. Wlodawer A., Gustchina A., Reshetnikova L., Lubkowski J., Zdanov A., Hui K. Y., Angleton E. L., Farmerie W. G., Goodenow M. M., Bhatt D. Structure of an inhibitor complex of the proteinase from feline immunodeficiency virus. Nat Struct Biol. 1995 Jun;2(6):480–488. doi: 10.1038/nsb0695-480. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES