Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Jul;71(7):5560–5569. doi: 10.1128/jvi.71.7.5560-5569.1997

The range and distribution of murine central nervous system cells infected with the gamma(1)34.5- mutant of herpes simplex virus 1.

N S Markovitz 1, D Baunoch 1, B Roizman 1
PMCID: PMC191798  PMID: 9188630

Abstract

Wild-type herpes simplex virus 1 (HSV-1) multiplies, spreads, and rapidly destroys cells of the murine central nervous system (CNS). In contrast, mutants lacking both copies of the gamma(1)34.5- gene have been shown to be virtually lacking in virulence even after direct inoculation of high-titered virus into the CNS of susceptible mice (J. Chou, E. R. Kern, R. J. Whitley, and B. Roizman, Science 250:1262-1266, 1990). To investigate the host range and distribution of infected cells in the CNS of mice, 4- to 5-week-old mice were inoculated stereotaxically into the caudate/putamen with 3 x 10(5) PFU of the gamma(1)34.5- virus R3616. Four-micrometer-thick sections of mouse brains removed on day 3, 5, or 7 after infection were reacted with a polyclonal antibody directed primarily to structural proteins of the virus and with antibodies specific for neurons, astrocytes, or oligodendrocytes. This report shows the following: (i) most of the tissue damage caused by R3616 was at the site of injection, (ii) the virus spread by retrograde transport from the site of infection to neuronal cell nuclei at distant sites and to ependymal cells by cerebrospinal fluid, (iii) the virus infected neurons, astrocytes, oligodendrocytes, and ependymal cells and hence did not discriminate among CNS cells, (iv) viral replication in some neurons could be deduced from the observation of infected astrocytes and oligodendrocytes at distant sites, and (v) infected cells were being efficiently cleared from the nervous system by day 7 after infection. We conclude that the gamma(1)34.5- attenuation phenotype is reflected in a gross reduction in the ability of the virus to replicate and spread from cell to cell and is not due to a restricted host range. The block in viral replication appears to be a late event in viral replication.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackermann M., Braun D. K., Pereira L., Roizman B. Characterization of herpes simplex virus 1 alpha proteins 0, 4, and 27 with monoclonal antibodies. J Virol. 1984 Oct;52(1):108–118. doi: 10.1128/jvi.52.1.108-118.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson J. R., Field H. J. The distribution of herpes simplex type 1 antigen in mouse central nervous system after different routes of inoculation. J Neurol Sci. 1983 Aug;60(2):181–195. doi: 10.1016/0022-510x(83)90061-8. [DOI] [PubMed] [Google Scholar]
  3. Andreansky S. S., He B., Gillespie G. Y., Soroceanu L., Markert J., Chou J., Roizman B., Whitley R. J. The application of genetically engineered herpes simplex viruses to the treatment of experimental brain tumors. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11313–11318. doi: 10.1073/pnas.93.21.11313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Balan P., Davis-Poynter N., Bell S., Atkinson H., Browne H., Minson T. An analysis of the in vitro and in vivo phenotypes of mutants of herpes simplex virus type 1 lacking glycoproteins gG, gE, gI or the putative gJ. J Gen Virol. 1994 Jun;75(Pt 6):1245–1258. doi: 10.1099/0022-1317-75-6-1245. [DOI] [PubMed] [Google Scholar]
  5. Barnett E. M., Cassell M. D., Perlman S. Two neurotropic viruses, herpes simplex virus type 1 and mouse hepatitis virus, spread along different neural pathways from the main olfactory bulb. Neuroscience. 1993 Dec;57(4):1007–1025. doi: 10.1016/0306-4522(93)90045-H. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barnett E. M., Evans G. D., Sun N., Perlman S., Cassell M. D. Anterograde tracing of trigeminal afferent pathways from the murine tooth pulp to cortex using herpes simplex virus type 1. J Neurosci. 1995 Apr;15(4):2972–2984. doi: 10.1523/JNEUROSCI.15-04-02972.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ben-Hur T., Asher Y., Tabor E., Darai G., Becker Y. HSV-1 virulence for mice by the intracerebral route is encoded by the BamHI-L DNA fragment containing the cell fusion gene. Arch Virol. 1987;96(1-2):117–122. doi: 10.1007/BF01310995. [DOI] [PubMed] [Google Scholar]
  8. Boerman R. H., Mitro A., Bloem B. R., Arnoldus E. P., Raap A. K., Peters A. C., van der Ploeg M. Detection of herpes simplex virus in the ependyma of experimentally infected mice. Acta Virol. 1991 Sep;35(5):450–457. [PubMed] [Google Scholar]
  9. Chambers R., Gillespie G. Y., Soroceanu L., Andreansky S., Chatterjee S., Chou J., Roizman B., Whitley R. J. Comparison of genetically engineered herpes simplex viruses for the treatment of brain tumors in a scid mouse model of human malignant glioma. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1411–1415. doi: 10.1073/pnas.92.5.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chou J., Chen J. J., Gross M., Roizman B. Association of a M(r) 90,000 phosphoprotein with protein kinase PKR in cells exhibiting enhanced phosphorylation of translation initiation factor eIF-2 alpha and premature shutoff of protein synthesis after infection with gamma 134.5- mutants of herpes simplex virus 1. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10516–10520. doi: 10.1073/pnas.92.23.10516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chou J., Kern E. R., Whitley R. J., Roizman B. Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science. 1990 Nov 30;250(4985):1262–1266. doi: 10.1126/science.2173860. [DOI] [PubMed] [Google Scholar]
  12. Chou J., Poon A. P., Johnson J., Roizman B. Differential response of human cells to deletions and stop codons in the gamma(1)34.5 gene of herpes simplex virus. J Virol. 1994 Dec;68(12):8304–8311. doi: 10.1128/jvi.68.12.8304-8311.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chou J., Roizman B. The gamma 1(34.5) gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programed cell death in neuronal cells. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3266–3270. doi: 10.1073/pnas.89.8.3266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chrisp C. E., Sunstrum J. C., Averill D. R., Jr, Levine M., Glorioso J. C. Characterization of encephalitis in adult mice induced by intracerebral inoculation of herpes simplex virus type 1 (KOS) and comparison with mutants showing decreased virulence. Lab Invest. 1989 Jun;60(6):822–830. [PubMed] [Google Scholar]
  15. Cook M. L., Stevens J. G. Pathogenesis of herpetic neuritis and ganglionitis in mice: evidence for intra-axonal transport of infection. Infect Immun. 1973 Feb;7(2):272–288. doi: 10.1128/iai.7.2.272-288.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ejercito P. M., Kieff E. D., Roizman B. Characterization of herpes simplex virus strains differing in their effects on social behaviour of infected cells. J Gen Virol. 1968 May;2(3):357–364. doi: 10.1099/0022-1317-2-3-357. [DOI] [PubMed] [Google Scholar]
  17. Field H. J., Darby G. Pathogenicity in mice of strains of herpes simplex virus which are resistant to acyclovir in vitro and in vivo. Antimicrob Agents Chemother. 1980 Feb;17(2):209–216. doi: 10.1128/aac.17.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Field H. J., Wildy P. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice. J Hyg (Lond) 1978 Oct;81(2):267–277. doi: 10.1017/s0022172400025109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fink-Jensen A., Mikkelsen J. D. The striato-entopeduncular pathway in the rat. A retrograde transport study with wheatgerm-agglutinin-horseradish peroxidase. Brain Res. 1989 Jan 2;476(1):194–198. doi: 10.1016/0006-8993(89)91558-8. [DOI] [PubMed] [Google Scholar]
  20. Graybiel A. M., Ragsdale C. W., Jr Fiber connections of the basal ganglia. Prog Brain Res. 1979;51:237–283. [PubMed] [Google Scholar]
  21. He B., Chou J., Liebermann D. A., Hoffman B., Roizman B. The carboxyl terminus of the murine MyD116 gene substitutes for the corresponding domain of the gamma(1)34.5 gene of herpes simplex virus to preclude the premature shutoff of total protein synthesis in infected human cells. J Virol. 1996 Jan;70(1):84–90. doi: 10.1128/jvi.70.1.84-90.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. He B., Gross M., Roizman B. The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):843–848. doi: 10.1073/pnas.94.3.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hersch S. M., White E. L. A quantitative study of the thalamocortical and other synapses in layer IV of pyramidal cells projecting from mouse SmI cortex to the caudate-putamen nucleus. J Comp Neurol. 1982 Nov 1;211(3):217–225. doi: 10.1002/cne.902110302. [DOI] [PubMed] [Google Scholar]
  24. JOHNSON R. T. THE PATHOGENESIS OF HERPES VIRUS ENCEPHALITIS. I. VIRUS PATHWAYS TO THE NERVOUS SYSTEM OF SUCKLING MICE DEMONSTRATED BY FLUORESCENT ANTIBODY STAINING. J Exp Med. 1964 Feb 1;119:343–356. doi: 10.1084/jem.119.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jones E. G., Leavitt R. Y. Retrograde axonal transport and the demonstration of non-specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. J Comp Neurol. 1974 Apr 15;154(4):349–377. doi: 10.1002/cne.901540402. [DOI] [PubMed] [Google Scholar]
  26. Kita H., Kitai S. T. Amygdaloid projections to the frontal cortex and the striatum in the rat. J Comp Neurol. 1990 Aug 1;298(1):40–49. doi: 10.1002/cne.902980104. [DOI] [PubMed] [Google Scholar]
  27. Knotts F. B., Cook M. L., Stevens J. G. Pathogenesis of herpetic encephalitis in mice after ophthalmic inoculation. J Infect Dis. 1974 Jul;130(1):16–27. doi: 10.1093/infdis/130.1.16. [DOI] [PubMed] [Google Scholar]
  28. Kristensson K., Nennesmo L., Persson L., Lycke E. Neuron to neuron transmission of herpes simplex virus. Transport of virus from skin to brainstem nuclei. J Neurol Sci. 1982 Apr;54(1):149–156. doi: 10.1016/0022-510x(82)90227-1. [DOI] [PubMed] [Google Scholar]
  29. Lascano E. F., Berria M. I. Histological study of the progression of herpes simplex virus in mice. Arch Virol. 1980;64(1):67–79. doi: 10.1007/BF01317392. [DOI] [PubMed] [Google Scholar]
  30. MacLean A. R., ul-Fareed M., Robertson L., Harland J., Brown S. M. Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the 'a' sequence. J Gen Virol. 1991 Mar;72(Pt 3):631–639. doi: 10.1099/0022-1317-72-3-631. [DOI] [PubMed] [Google Scholar]
  31. Martin J. R., Jenkins F. J., Henken D. B. Targets of herpes simplex virus type 1 infection in a mouse corneal model. Acta Neuropathol. 1991;82(5):353–363. doi: 10.1007/BF00296546. [DOI] [PubMed] [Google Scholar]
  32. Mattiace L. A., Baring M. D., Manaye K. F., Mihailoff G. A., German D. C. Mesostriatal projections in BALB/c and CBA mice: a quantitative retrograde neuroanatomical tracing study. Brain Res Bull. 1989 Jul-Aug;23(1-2):61–68. doi: 10.1016/0361-9230(89)90164-0. [DOI] [PubMed] [Google Scholar]
  33. McDonald A. J. Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience. 1991;44(1):1–14. doi: 10.1016/0306-4522(91)90247-l. [DOI] [PubMed] [Google Scholar]
  34. McDonald A. J. Topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens, and related striatal-like areas of the rat brain. Neuroscience. 1991;44(1):15–33. doi: 10.1016/0306-4522(91)90248-m. [DOI] [PubMed] [Google Scholar]
  35. McFarland D. J., Hotchin J. Contrasting patterns of virus spread and neuropathology following microinjection of herpes simplex virus into the hippocampus or cerebellum of mice. J Neurol Sci. 1987 Jul;79(3):255–265. doi: 10.1016/0022-510x(87)90233-4. [DOI] [PubMed] [Google Scholar]
  36. McFarland D. J., Sikora E., Hotchin J. The production of focal herpes encephalitis in mice by stereotaxic inoculation of virus. Anatomical and behavioral effects. J Neurol Sci. 1986 Feb;72(2-3):307–318. doi: 10.1016/0022-510x(86)90018-3. [DOI] [PubMed] [Google Scholar]
  37. McGeorge A. J., Faull R. L. The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience. 1989;29(3):503–537. doi: 10.1016/0306-4522(89)90128-0. [DOI] [PubMed] [Google Scholar]
  38. McLean J. H., Shipley M. T., Bernstein D. I. Golgi-like, transneuronal retrograde labelling with CNS injections of herpes simplex virus type 1. Brain Res Bull. 1989 May;22(5):867–881. doi: 10.1016/0361-9230(89)90032-4. [DOI] [PubMed] [Google Scholar]
  39. Meignier B., Longnecker R., Mavromara-Nazos P., Sears A. E., Roizman B. Virulence of and establishment of latency by genetically engineered deletion mutants of herpes simplex virus 1. Virology. 1988 Jan;162(1):251–254. doi: 10.1016/0042-6822(88)90417-5. [DOI] [PubMed] [Google Scholar]
  40. Meignier B., Longnecker R., Roizman B. In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020: construction and evaluation in rodents. J Infect Dis. 1988 Sep;158(3):602–614. doi: 10.1093/infdis/158.3.602. [DOI] [PubMed] [Google Scholar]
  41. Merkel K. H., Zimmer M. Herpes simplex encephalitis. A modified indirect immunoperoxidase technique for rapid diagnosis in paraffin-embedded tissue. Arch Pathol Lab Med. 1981 Jul;105(7):351–352. [PubMed] [Google Scholar]
  42. Mitro A., Palkovits M. Morphology of the rat brain ventricles, ependyma, and periventricular structures. Bibl Anat. 1981;(21):1–110. [PubMed] [Google Scholar]
  43. Mizota A., Dix R. D., Hamasaki D. I. Bilateral electroretinographic changes induced by unilateral intra-visual cortex inoculation of herpes simplex virus type 1 in BALB/c mice. Doc Ophthalmol. 1993;84(3):213–230. doi: 10.1007/BF01203654. [DOI] [PubMed] [Google Scholar]
  44. Mullen R. J., Buck C. R., Smith A. M. NeuN, a neuronal specific nuclear protein in vertebrates. Development. 1992 Sep;116(1):201–211. doi: 10.1242/dev.116.1.201. [DOI] [PubMed] [Google Scholar]
  45. Neeley S. P., Cross A. J., Crow T. J., Johnson J. A., Taylor G. R. Herpes simplex virus encephalitis. Neuroanatomical and neurochemical selectivity. J Neurol Sci. 1985 Dec;71(2-3):325–337. doi: 10.1016/0022-510x(85)90071-1. [DOI] [PubMed] [Google Scholar]
  46. Perlman S., Barnett E., Jacobsen G. Mouse hepatitis virus and herpes simplex virus move along different CNS pathways. Adv Exp Med Biol. 1993;342:313–318. doi: 10.1007/978-1-4615-2996-5_48. [DOI] [PubMed] [Google Scholar]
  47. Porter L. L., White E. L. Afferent and efferent pathways of the vibrissal region of primary motor cortex in the mouse. J Comp Neurol. 1983 Mar 1;214(3):279–289. doi: 10.1002/cne.902140306. [DOI] [PubMed] [Google Scholar]
  48. Roizman B. The function of herpes simplex virus genes: a primer for genetic engineering of novel vectors. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11307–11312. doi: 10.1073/pnas.93.21.11307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Roller R. J., Roizman B. Herpes simplex virus 1 RNA-binding protein US11 negatively regulates the accumulation of a truncated viral mRNA. J Virol. 1991 Nov;65(11):5873–5879. doi: 10.1128/jvi.65.11.5873-5879.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sears A. E., Halliburton I. W., Meignier B., Silver S., Roizman B. Herpes simplex virus 1 mutant deleted in the alpha 22 gene: growth and gene expression in permissive and restrictive cells and establishment of latency in mice. J Virol. 1985 Aug;55(2):338–346. doi: 10.1128/jvi.55.2.338-346.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Seegal R. F., McFarland D. J. Stereotaxic microinjection of HSV-1 selectively decreases striatal dopamine concentrations in mice. Brain Res. 1988 Apr 5;445(2):234–240. doi: 10.1016/0006-8993(88)91184-5. [DOI] [PubMed] [Google Scholar]
  52. Steindler D. A., Isaacson L. G., Trosko B. K. Combined immunocytochemistry and autoradiographic retrograde axonal tracing for identification of transmitters of projection neurons. J Neurosci Methods. 1983 Nov;9(3):217–228. doi: 10.1016/0165-0270(83)90084-5. [DOI] [PubMed] [Google Scholar]
  53. Taha M. Y., Clements G. B., Brown S. M. A variant of herpes simplex virus type 2 strain HG52 with a 1.5 kb deletion in RL between 0 to 0.02 and 0.81 to 0.83 map units is non-neurovirulent for mice. J Gen Virol. 1989 Mar;70(Pt 3):705–716. doi: 10.1099/0022-1317-70-3-705. [DOI] [PubMed] [Google Scholar]
  54. Taha M. Y., Clements G. B., Brown S. M. The herpes simplex virus type 2 (HG52) variant JH2604 has a 1488 bp deletion which eliminates neurovirulence in mice. J Gen Virol. 1989 Nov;70(Pt 11):3073–3078. doi: 10.1099/0022-1317-70-11-3073. [DOI] [PubMed] [Google Scholar]
  55. Tomlinson A. H., Esiri M. M. Herpes simplex encephalitis. Immunohistological demonstration of spread of virus via olfactory pathways in mice. J Neurol Sci. 1983 Aug-Sep;60(3):473–484. doi: 10.1016/0022-510x(83)90158-2. [DOI] [PubMed] [Google Scholar]
  56. Vann V. R., Atherton S. S. Neural spread of herpes simplex virus after anterior chamber inoculation. Invest Ophthalmol Vis Sci. 1991 Aug;32(9):2462–2472. [PubMed] [Google Scholar]
  57. Webb S. J., Eglin R. P., Reading M., Esiri M. M. Experimental murine herpes simplex encephalitis: immunohistochemical detection of virus antigens. Neuropathol Appl Neurobiol. 1989 Mar-Apr;15(2):165–174. doi: 10.1111/j.1365-2990.1989.tb01218.x. [DOI] [PubMed] [Google Scholar]
  58. Whitley R. J., Kern E. R., Chatterjee S., Chou J., Roizman B. Replication, establishment of latency, and induced reactivation of herpes simplex virus gamma 1 34.5 deletion mutants in rodent models. J Clin Invest. 1993 Jun;91(6):2837–2843. doi: 10.1172/JCI116527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Yamada Y., Kimura H., Morishima T., Daikoku T., Maeno K., Nishiyama Y. The pathogenicity of ribonucleotide reductase-null mutants of herpes simplex virus type 1 in mice. J Infect Dis. 1991 Dec;164(6):1091–1097. doi: 10.1093/infdis/164.6.1091. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES