Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Feb;102(2):345–350. doi: 10.1111/j.1476-5381.1991.tb12176.x

Pharmacokinetic characterization of phosphatidylserine liposomes in the rat.

P Palatini 1, G Viola 1, E Bigon 1, A M Menegus 1, A Bruni 1
PMCID: PMC1918033  PMID: 2015419

Abstract

1. The plasma decay, tissue uptake and biotransformation of radiolabelled phosphatidylserine (PS) liposomes have been investigated in rats following bolus i.v. injection (2 mg kg-1). 2. PS plasma concentration showed a biexponential decay with half-lives of 0.85 and 40 min. The following interpretation of the biphasic decay is proposed: (1) The rapid initial decline is due to the irreversible uptake of PS liposomes by the mononuclear phagocyte system, as demonstrated by the almost exclusive accumulation of PS in liver and spleen. (2) The slow decay phase reflects the elimination of that fraction of PS that has been incorporated into high density plasma lipoproteins (HDL). A kinetic model has been developed to describe these phenomena and a good agreement has been observed between experimental data and theoretical values. 3. Evidence has been obtained that a large fraction of PS is hydrolyzed at the injection site, probably by phospholipase A2 and other hydrolytic enzymes released by platelets. Hydrolysis at the injection site has also been observed following intraperitoneal and intramuscular injections. 4. As shown by the comparative analysis of the biotransformation products found in tissues after administration of either [3H]-glycerol-PS or [14C]-serine-PS, parenterally administered PS follows two distinct metabolic pathways: (1) decarboxylation to phosphatidylethanolamine and (2) extensive hydrolytic degradation with release of the individual components of the molecule. These pathways probably reflect the two main mechanisms of PS uptake, incorporation into the plasma membrane and internalization by endocytosis, respectively.

Full text

PDF
345

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen T. M., Everest J. M. Effect of liposome size and drug release properties on pharmacokinetics of encapsulated drug in rats. J Pharmacol Exp Ther. 1983 Aug;226(2):539–544. [PubMed] [Google Scholar]
  2. Allen T. M., Williamson P., Schlegel R. A. Phosphatidylserine as a determinant of reticuloendothelial recognition of liposome models of the erythrocyte surface. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8067–8071. doi: 10.1073/pnas.85.21.8067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bellini F., Toffano G., Bruni A. Activation of phosphoinositide hydrolysis by nerve growth factor and lysophosphatidylserine in rat peritoneal mast cells. Biochim Biophys Acta. 1988 Jun 30;970(2):187–193. doi: 10.1016/0167-4889(88)90178-4. [DOI] [PubMed] [Google Scholar]
  4. Bellini F., Viola G., Menegus A. M., Toffano G., Bruni A. Signalling mechanism in the lysophosphatidylserine-induced activation of mouse mast cells. Biochim Biophys Acta. 1990 Apr 9;1052(1):216–220. doi: 10.1016/0167-4889(90)90079-s. [DOI] [PubMed] [Google Scholar]
  5. Bienvenüe A., Vidal M., Sainte-Marie J., Philippot J. Kinetics of phospholipid transfer between liposomes (neutral or negatively charged) and high-density lipoproteins: a spin-label study of early events. Biochim Biophys Acta. 1985 Jul 31;835(3):557–566. doi: 10.1016/0005-2760(85)90125-0. [DOI] [PubMed] [Google Scholar]
  6. Bigon E., Boarato E., Bruni A., Leon A., Toffano G. Pharmacological effects of phosphatidylserine liposomes: regulation of gylcolysis and energy level in brain. Br J Pharmacol. 1979 Jun;66(2):167–174. doi: 10.1111/j.1476-5381.1979.tb13661.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bigon E., Boarato E., Bruni A., Leon A., Toffano G. Pharmacological effects of phosphatidylserine liposomes: the role of lysophosphatidylserine. Br J Pharmacol. 1979 Dec;67(4):611–616. doi: 10.1111/j.1476-5381.1979.tb08708.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bruni A., Palatini P. Biological and pharmacological properties of phospholipids. Prog Med Chem. 1982;19:111–203. doi: 10.1016/s0079-6468(08)70329-1. [DOI] [PubMed] [Google Scholar]
  9. Bruni A., Toffano G., Leon A., Boarato E. Pharmacological effects of phosphatidylserine liposomes. Nature. 1976 Mar 25;260(5549):331–333. doi: 10.1038/260331a0. [DOI] [PubMed] [Google Scholar]
  10. Damen J., Regts J., Scherphof G. Transfer and exchange of phospholipid between small unilamellar liposomes and rat plasma high density lipoproteins. Dependence on cholesterol content and phospholipid composition. Biochim Biophys Acta. 1981 Sep 24;665(3):538–545. doi: 10.1016/0005-2760(81)90268-x. [DOI] [PubMed] [Google Scholar]
  11. Dijkstra J., van Galen M., Regts D., Scherphof G. Uptake and processing of liposomal phospholipids by Kupffer cells in vitro. Eur J Biochem. 1985 Apr 15;148(2):391–397. doi: 10.1111/j.1432-1033.1985.tb08851.x. [DOI] [PubMed] [Google Scholar]
  12. Eisenberg S. High density lipoprotein metabolism. J Lipid Res. 1984 Oct;25(10):1017–1058. [PubMed] [Google Scholar]
  13. Gabizon A., Papahadjopoulos D. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6949–6953. doi: 10.1073/pnas.85.18.6949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gilbreath M. J., Hoover D. L., Alving C. R., Swartz G. M., Jr, Meltzer M. S. Inhibition of lymphokine-induced macrophage microbicidal activity against Leishmania major by liposomes: characterization of the physicochemical requirements for liposome inhibition. J Immunol. 1986 Sep 1;137(5):1681–1687. [PubMed] [Google Scholar]
  15. Gregoriadis G., Neerunjun D. E. Control of the rate of hepatic uptake and catabolism of liposome-entrapped proteins injected into rats. Possible therapeutic applications. Eur J Biochem. 1974 Aug 15;47(1):179–185. doi: 10.1111/j.1432-1033.1974.tb03681.x. [DOI] [PubMed] [Google Scholar]
  16. Horigome K., Hayakawa M., Inoue K., Nojima S. Selective release of phospholipase A2 and lysophosphatidylserine-specific lysophospholipase from rat platelets. J Biochem. 1987 Jan;101(1):53–61. doi: 10.1093/oxfordjournals.jbchem.a121907. [DOI] [PubMed] [Google Scholar]
  17. Hwang K. J., Luk K. F., Beaumier P. L. Hepatic uptake and degradation of unilamellar sphingomyelin/cholesterol liposomes: a kinetic study. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4030–4034. doi: 10.1073/pnas.77.7.4030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Juliano R. L., Stamp D. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem Biophys Res Commun. 1975 Apr 7;63(3):651–658. doi: 10.1016/s0006-291x(75)80433-5. [DOI] [PubMed] [Google Scholar]
  19. Kao Y. J., Loo T. L. Pharmacological disposition of negatively charged phospholipid vesicles in rats. J Pharm Sci. 1980 Nov;69(11):1338–1340. doi: 10.1002/jps.2600691126. [DOI] [PubMed] [Google Scholar]
  20. Mietto L., Boarato E., Toffano G., Bruni A. Internalization of phosphatidylserine by adherent and non-adherent rat mononuclear cells. Biochim Biophys Acta. 1989 Sep 4;1013(1):1–6. doi: 10.1016/0167-4889(89)90119-5. [DOI] [PubMed] [Google Scholar]
  21. Mietto L., Boarato E., Toffano G., Bruni A. Lysophosphatidylserine-dependent interaction between rat leukocytes and mast cells. Biochim Biophys Acta. 1987 Sep 14;930(2):145–153. doi: 10.1016/0167-4889(87)90026-7. [DOI] [PubMed] [Google Scholar]
  22. Nishikawa K., Arai H., Inoue K. Scavenger receptor-mediated uptake and metabolism of lipid vesicles containing acidic phospholipids by mouse peritoneal macrophages. J Biol Chem. 1990 Mar 25;265(9):5226–5231. [PubMed] [Google Scholar]
  23. Orlando P., Ippolito G., Binaglia L., Giordano C., Porcellati G. An improved procedure for the synthesis of 14C-labeled phosphatidylserine from cerebral phosphatidic acid. J Lipid Res. 1980 Nov;21(8):1053–1057. [PubMed] [Google Scholar]
  24. Ponzin D., Mancini C., Toffano G., Bruni A., Doria G. Phosphatidylserine-induced modulation of the immune response in mice: effect of intravenous administration. Immunopharmacology. 1989 Nov-Dec;18(3):167–176. doi: 10.1016/0162-3109(89)90014-3. [DOI] [PubMed] [Google Scholar]
  25. Punzi L., Todesco S., Toffano G., Catena R., Bigon E., Bruni A. Phospholipids in inflammatory synovial effusions. Rheumatol Int. 1986;6(1):7–11. doi: 10.1007/BF00270658. [DOI] [PubMed] [Google Scholar]
  26. Scherphof G., Roerdink F., Waite M., Parks J. Disintegration of phosphatidylcholine liposomes in plasma as a result of interaction with high-density lipoproteins. Biochim Biophys Acta. 1978 Aug 17;542(2):296–307. doi: 10.1016/0304-4165(78)90025-9. [DOI] [PubMed] [Google Scholar]
  27. Schroit A. J., Madsen J. W., Tanaka Y. In vivo recognition and clearance of red blood cells containing phosphatidylserine in their plasma membranes. J Biol Chem. 1985 Apr 25;260(8):5131–5138. [PubMed] [Google Scholar]
  28. Stein Y., Stein O. Metabolism of labeled lysolecithin, lysophosphatidyl ethanolamine and lecithin in the rat. Biochim Biophys Acta. 1966 Feb 1;116(1):95–107. doi: 10.1016/0005-2760(66)90095-6. [DOI] [PubMed] [Google Scholar]
  29. Tanaka Y., Schroit A. J. Insertion of fluorescent phosphatidylserine into the plasma membrane of red blood cells. Recognition by autologous macrophages. J Biol Chem. 1983 Sep 25;258(18):11335–11343. [PubMed] [Google Scholar]
  30. Vidal M., Bienvenue A., Sainte-Marie J., Philippot J. The influence of the internal content of negatively charged liposomes on their interaction with high-density lipoprotein. Eur J Biochem. 1984 Jan 16;138(2):399–405. doi: 10.1111/j.1432-1033.1984.tb07929.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES