Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Aug;71(8):5742–5749. doi: 10.1128/jvi.71.8.5742-5749.1997

Blocking of feline immunodeficiency virus infection by a monoclonal antibody to CD9 is via inhibition of virus release rather than interference with receptor binding.

A de Parseval 1, D L Lerner 1, P Borrow 1, B J Willett 1, J H Elder 1
PMCID: PMC191826  PMID: 9223460

Abstract

A monoclonal antibody, MAb vpg15, inhibits feline immunodeficiency virus (FIV) infection in tissue culture. The antibody is directed to a determinant of the feline cell surface marker, CD9, implying that CD9 may serve as a viral receptor or coreceptor in this system. In cells expressing CD9, MAb vpg15 markedly delayed acute virus infection in terms of reverse transcriptase activity detected in cell culture supernatants. This effect was evident if the antibody was added before, immediately after, or 24 h after virus infection. Binding experiments showed that MAb vpg15 did not block virus binding to the cells. PCR analyses at various intervals postinfection also indicated that MAb vpg15 did not block virus uptake, reverse transcription of viral RNA, or integration into host cell DNA. Multiply spliced mRNAs were detected up to 24 h postinfection in both control and MAb vpg15-treated cells. However, viral mRNAs were markedly diminished in MAb vpg15-treated cells after this time, consistent with a failure of the FIV infection to spread in the cell culture. Treatment of chronically infected cells with MAb vpg15 also caused a sharp diminution in viral particle production, while viral mRNA levels were the same in both untreated and MAb-treated infected cells. Analyses of intracellular and extracellular levels of virus-associated antigens showed an enhanced accumulation of intracellular p24. These findings are consistent with the interpretation that MAb vpg15 acts at a posttranscriptional stage by interfering with the assembly and/or release of virus from the cell.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackley C. D., Yamamoto J. K., Levy N., Pedersen N. C., Cooper M. D. Immunologic abnormalities in pathogen-free cats experimentally infected with feline immunodeficiency virus. J Virol. 1990 Nov;64(11):5652–5655. doi: 10.1128/jvi.64.11.5652-5655.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beebe A. M., Dua N., Faith T. G., Moore P. F., Pedersen N. C., Dandekar S. Primary stage of feline immunodeficiency virus infection: viral dissemination and cellular targets. J Virol. 1994 May;68(5):3080–3091. doi: 10.1128/jvi.68.5.3080-3091.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benkirane M., Corbeau P., Housset V., Devaux C. An antibody that binds the immunoglobulin CDR3-like region of the CD4 molecule inhibits provirus transcription in HIV-infected T cells. EMBO J. 1993 Dec 15;12(13):4909–4921. doi: 10.1002/j.1460-2075.1993.tb06185.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benkirane M., Hirn M., Carrière D., Devaux C. Functional epitope analysis of the human CD4 molecule: antibodies that inhibit human immunodeficiency virus type 1 gene expression bind to the immunoglobulin CDR3-like region of CD4. J Virol. 1995 Nov;69(11):6898–6903. doi: 10.1128/jvi.69.11.6898-6903.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berditchevski F., Zutter M. M., Hemler M. E. Characterization of novel complexes on the cell surface between integrins and proteins with 4 transmembrane domains (TM4 proteins). Mol Biol Cell. 1996 Feb;7(2):193–207. doi: 10.1091/mbc.7.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boucheix C., Benoit P., Frachet P., Billard M., Worthington R. E., Gagnon J., Uzan G. Molecular cloning of the CD9 antigen. A new family of cell surface proteins. J Biol Chem. 1991 Jan 5;266(1):117–122. [PubMed] [Google Scholar]
  7. Briant L., Benkirane M., Girard M., Hirn M., Iosef C., Devaux C. Inhibition of human immunodeficiency virus type 1 production in infected peripheral blood mononuclear cells by human leukocyte antigen class I-specific antibodies: evidence for a novel antiviral mechanism. J Virol. 1996 Aug;70(8):5213–5220. doi: 10.1128/jvi.70.8.5213-5220.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carmo A. M., Wright M. D. Association of the transmembrane 4 superfamily molecule CD53 with a tyrosine phosphatase activity. Eur J Immunol. 1995 Jul;25(7):2090–2095. doi: 10.1002/eji.1830250743. [DOI] [PubMed] [Google Scholar]
  9. Dalgleish A. G., Beverley P. C., Clapham P. R., Crawford D. H., Greaves M. F., Weiss R. A. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature. 1984 Dec 20;312(5996):763–767. doi: 10.1038/312763a0. [DOI] [PubMed] [Google Scholar]
  10. Dumont-Drieux A. M., De Parseval A., Heiber M., Salmon P., Pancino G., Sonigo P., Klatzmann D. Unusual amino acid sequence of the second Ig-like domain of the feline CD4 protein. AIDS Res Hum Retroviruses. 1992 Sep;8(9):1581–1591. doi: 10.1089/aid.1992.8.1581. [DOI] [PubMed] [Google Scholar]
  11. Dutko F. J., Oldstone M. B. Genomic and biological variation among commonly used lymphocytic choriomeningitis virus strains. J Gen Virol. 1983 Aug;64(Pt 8):1689–1698. doi: 10.1099/0022-1317-64-8-1689. [DOI] [PubMed] [Google Scholar]
  12. English R. V., Nelson P., Johnson C. M., Nasisse M., Tompkins W. A., Tompkins M. B. Development of clinical disease in cats experimentally infected with feline immunodeficiency virus. J Infect Dis. 1994 Sep;170(3):543–552. doi: 10.1093/infdis/170.3.543. [DOI] [PubMed] [Google Scholar]
  13. Herbein G., Montaner L. J., Gordon S. Tumor necrosis factor alpha inhibits entry of human immunodeficiency virus type 1 into primary human macrophages: a selective role for the 75-kilodalton receptor. J Virol. 1996 Nov;70(11):7388–7397. doi: 10.1128/jvi.70.11.7388-7397.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hoffmann-Fezer G., Thum J., Ackley C., Herbold M., Mysliwietz J., Thefeld S., Hartmann K., Kraft W. Decline in CD4+ cell numbers in cats with naturally acquired feline immunodeficiency virus infection. J Virol. 1992 Mar;66(3):1484–1488. doi: 10.1128/jvi.66.3.1484-1488.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hohdatsu T., Hirabayashi H., Motokawa K., Koyama H. Comparative study of the cell tropism of feline immunodeficiency virus isolates of subtypes A, B and D classified on the basis of the env gene V3-V5 sequence. J Gen Virol. 1996 Jan;77(Pt 1):93–100. doi: 10.1099/0022-1317-77-1-93. [DOI] [PubMed] [Google Scholar]
  16. Hosie M. J., Willett B. J., Dunsford T. H., Jarrett O., Neil J. C. A monoclonal antibody which blocks infection with feline immunodeficiency virus identifies a possible non-CD4 receptor. J Virol. 1993 Mar;67(3):1667–1671. doi: 10.1128/jvi.67.3.1667-1671.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ikeyama S., Koyama M., Yamaoko M., Sasada R., Miyake M. Suppression of cell motility and metastasis by transfection with human motility-related protein (MRP-1/CD9) DNA. J Exp Med. 1993 May 1;177(5):1231–1237. doi: 10.1084/jem.177.5.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Iwamoto R., Higashiyama S., Mitamura T., Taniguchi N., Klagsbrun M., Mekada E. Heparin-binding EGF-like growth factor, which acts as the diphtheria toxin receptor, forms a complex with membrane protein DRAP27/CD9, which up-regulates functional receptors and diphtheria toxin sensitivity. EMBO J. 1994 May 15;13(10):2322–2330. doi: 10.1002/j.1460-2075.1994.tb06516.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Iwamoto R., Senoh H., Okada Y., Uchida T., Mekada E. An antibody that inhibits the binding of diphtheria toxin to cells revealed the association of a 27-kDa membrane protein with the diphtheria toxin receptor. J Biol Chem. 1991 Oct 25;266(30):20463–20469. [PubMed] [Google Scholar]
  20. Jones N. H., Borowitz M. J., Metzgar R. S. Characterization and distribution of a 24,000-molecular weight antigen defined by a monoclonal antibody (DU-ALL-1) elicited to common acute lymphoblastic leukemia (cALL) cells. Leuk Res. 1982;6(4):449–464. doi: 10.1016/0145-2126(82)90002-9. [DOI] [PubMed] [Google Scholar]
  21. Kersey J. H., LeBien T. W., Abramson C. S., Newman R., Sutherland R., Greaves M. P-24: a human leukemia-associated and lymphohemopoietic progenitor cell surface structure identified with monoclonal antibody. J Exp Med. 1981 Mar 1;153(3):726–731. doi: 10.1084/jem.153.3.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Klatzmann D., Champagne E., Chamaret S., Gruest J., Guetard D., Hercend T., Gluckman J. C., Montagnier L. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature. 1984 Dec 20;312(5996):767–768. doi: 10.1038/312767a0. [DOI] [PubMed] [Google Scholar]
  23. Lebel-Binay S., Lagaudrière C., Fradelizi D., Conjeaud H. CD82, member of the tetra-span-transmembrane protein family, is a costimulatory protein for T cell activation. J Immunol. 1995 Jul 1;155(1):101–110. [PubMed] [Google Scholar]
  24. Letarte M., Seehafer J. G., Greaves A., Masellis-Smith A., Shaw A. R. Homotypic aggregation of pre-B leukemic cell lines by antibodies to VLA integrins correlates with their expression of CD9. Leukemia. 1993 Jan;7(1):93–103. [PubMed] [Google Scholar]
  25. Linenberger M. L., Beebe A. M., Pedersen N. C., Abkowitz J. L., Dandekar S. Marrow accessory cell infection and alterations in hematopoiesis accompany severe neutropenia during experimental acute infection with feline immunodeficiency virus. Blood. 1995 Feb 15;85(4):941–951. [PubMed] [Google Scholar]
  26. Löffler S., Lottspeich F., Lanza F., Azorsa D. O., ter Meulen V., Schneider-Schaulies J. CD9, a tetraspan transmembrane protein, renders cells susceptible to canine distemper virus. J Virol. 1997 Jan;71(1):42–49. doi: 10.1128/jvi.71.1.42-49.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Maddon P. J., Dalgleish A. G., McDougal J. S., Clapham P. R., Weiss R. A., Axel R. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell. 1986 Nov 7;47(3):333–348. doi: 10.1016/0092-8674(86)90590-8. [DOI] [PubMed] [Google Scholar]
  28. Masellis-Smith A., Jensen G. S., Seehafer J. G., Slupsky J. R., Shaw A. R. Anti-CD9 monoclonal antibodies induce homotypic adhesion of pre-B cell lines by a novel mechanism. J Immunol. 1990 Mar 1;144(5):1607–1613. [PubMed] [Google Scholar]
  29. Masellis-Smith A., Shaw A. R. CD9-regulated adhesion. Anti-CD9 monoclonal antibody induce pre-B cell adhesion to bone marrow fibroblasts through de novo recognition of fibronectin. J Immunol. 1994 Mar 15;152(6):2768–2777. [PubMed] [Google Scholar]
  30. Miller M. D., Warmerdam M. T., Page K. A., Feinberg M. B., Greene W. C. Expression of the human immunodeficiency virus type 1 (HIV-1) nef gene during HIV-1 production increases progeny particle infectivity independently of gp160 or viral entry. J Virol. 1995 Jan;69(1):579–584. doi: 10.1128/jvi.69.1.579-584.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mitamura T., Iwamoto R., Umata T., Yomo T., Urabe I., Tsuneoka M., Mekada E. The 27-kD diphtheria toxin receptor-associated protein (DRAP27) from vero cells is the monkey homologue of human CD9 antigen: expression of DRAP27 elevates the number of diphtheria toxin receptors on toxin-sensitive cells. J Cell Biol. 1992 Sep;118(6):1389–1399. doi: 10.1083/jcb.118.6.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nakamura K., Iwamoto R., Mekada E. Membrane-anchored heparin-binding EGF-like growth factor (HB-EGF) and diphtheria toxin receptor-associated protein (DRAP27)/CD9 form a complex with integrin alpha 3 beta 1 at cell-cell contact sites. J Cell Biol. 1995 Jun;129(6):1691–1705. doi: 10.1083/jcb.129.6.1691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Norimine J., Miyazawa T., Kawaguchi Y., Tomonaga K., Shin Y. S., Toyosaki T., Kohmoto M., Niikura M., Tohya Y., Mikami T. Feline CD4 molecules expressed on feline non-lymphoid cell lines are not enough for productive infection of highly lymphotropic feline immunodeficiency virus isolates. Arch Virol. 1993;130(1-2):171–178. doi: 10.1007/BF01319005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Novotney C., English R. V., Housman J., Davidson M. G., Nasisse M. P., Jeng C. R., Davis W. C., Tompkins M. B. Lymphocyte population changes in cats naturally infected with feline immunodeficiency virus. AIDS. 1990 Dec;4(12):1213–1218. doi: 10.1097/00002030-199012000-00005. [DOI] [PubMed] [Google Scholar]
  35. Pedersen N. C., Ho E. W., Brown M. L., Yamamoto J. K. Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science. 1987 Feb 13;235(4790):790–793. doi: 10.1126/science.3643650. [DOI] [PubMed] [Google Scholar]
  36. Phillips T. R., Talbott R. L., Lamont C., Muir S., Lovelace K., Elder J. H. Comparison of two host cell range variants of feline immunodeficiency virus. J Virol. 1990 Oct;64(10):4605–4613. doi: 10.1128/jvi.64.10.4605-4613.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Radford K. J., Thorne R. F., Hersey P. CD63 associates with transmembrane 4 superfamily members, CD9 and CD81, and with beta 1 integrins in human melanoma. Biochem Biophys Res Commun. 1996 May 6;222(1):13–18. doi: 10.1006/bbrc.1996.0690. [DOI] [PubMed] [Google Scholar]
  38. Rubinstein E., Le Naour F., Billard M., Prenant M., Boucheix C. CD9 antigen is an accessory subunit of the VLA integrin complexes. Eur J Immunol. 1994 Dec;24(12):3005–3013. doi: 10.1002/eji.1830241213. [DOI] [PubMed] [Google Scholar]
  39. Rubinstein E., Le Naour F., Lagaudrière-Gesbert C., Billard M., Conjeaud H., Boucheix C. CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA integrins. Eur J Immunol. 1996 Nov;26(11):2657–2665. doi: 10.1002/eji.1830261117. [DOI] [PubMed] [Google Scholar]
  40. Shaw A. R., Domanska A., Mak A., Gilchrist A., Dobler K., Visser L., Poppema S., Fliegel L., Letarte M., Willett B. J. Ectopic expression of human and feline CD9 in a human B cell line confers beta 1 integrin-dependent motility on fibronectin and laminin substrates and enhanced tyrosine phosphorylation. J Biol Chem. 1995 Oct 13;270(41):24092–24099. doi: 10.1074/jbc.270.41.24092. [DOI] [PubMed] [Google Scholar]
  41. Tai X. G., Yashiro Y., Abe R., Toyooka K., Wood C. R., Morris J., Long A., Ono S., Kobayashi M., Hamaoka T. A role for CD9 molecules in T cell activation. J Exp Med. 1996 Aug 1;184(2):753–758. doi: 10.1084/jem.184.2.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tang S. B., Levy J. A. Parameters involved in the cell fusion induced by HIV. AIDS. 1990 May;4(5):409–415. doi: 10.1097/00002030-199005000-00005. [DOI] [PubMed] [Google Scholar]
  43. Torten M., Franchini M., Barlough J. E., George J. W., Mozes E., Lutz H., Pedersen N. C. Progressive immune dysfunction in cats experimentally infected with feline immunodeficiency virus. J Virol. 1991 May;65(5):2225–2230. doi: 10.1128/jvi.65.5.2225-2230.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Willett B. J., Hosie M. J., Dunsford T. H., Neil J. C., Jarrett O. Productive infection of T-helper lymphocytes with feline immunodeficiency virus is accompanied by reduced expression of CD4. AIDS. 1991 Dec;5(12):1469–1475. doi: 10.1097/00002030-199112000-00009. [DOI] [PubMed] [Google Scholar]
  45. Willett B. J., Hosie M. J., Jarrett O., Neil J. C. Identification of a putative cellular receptor for feline immunodeficiency virus as the feline homologue of CD9. Immunology. 1994 Feb;81(2):228–233. [PMC free article] [PubMed] [Google Scholar]
  46. Willett B. J., Neil J. C. cDNA cloning and eukaryotic expression of feline CD9. Mol Immunol. 1995 Apr;32(6):417–423. doi: 10.1016/0161-5890(95)00008-3. [DOI] [PubMed] [Google Scholar]
  47. Willett B. J., de Parseval A., Peri E., Rocchi M., Hosie M. J., Randall R., Klatzmann D., Neil J. C., Jarrett O. The generation of monoclonal antibodies recognising novel epitopes by immunisation with solid matrix antigen-antibody complexes reveals a polymorphic determinant on feline CD4. J Immunol Methods. 1994 Dec 2;176(2):213–220. doi: 10.1016/0022-1759(94)90315-8. [DOI] [PubMed] [Google Scholar]
  48. Willett B., Hosie M., Shaw A., Neil J. Inhibition of feline immunodeficiency virus infection by CD9 antibody operates after virus entry and is independent of virus tropism. J Gen Virol. 1997 Mar;78(Pt 3):611–618. doi: 10.1099/0022-1317-78-3-611. [DOI] [PubMed] [Google Scholar]
  49. Wright M. D., Tomlinson M. G. The ins and outs of the transmembrane 4 superfamily. Immunol Today. 1994 Dec;15(12):588–594. doi: 10.1016/0167-5699(94)90222-4. [DOI] [PubMed] [Google Scholar]
  50. Yamamoto J. K., Sparger E., Ho E. W., Andersen P. R., O'Connor T. P., Mandell C. P., Lowenstine L., Munn R., Pedersen N. C. Pathogenesis of experimentally induced feline immunodeficiency virus infection in cats. Am J Vet Res. 1988 Aug;49(8):1246–1258. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES