Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Aug;71(8):5799–5804. doi: 10.1128/jvi.71.8.5799-5804.1997

Proteolytic processing in African swine fever virus: evidence for a new structural polyprotein, pp62.

C Simón-Mateo 1, G Andrés 1, F Almazán 1, E Viñuela 1
PMCID: PMC191834  PMID: 9223468

Abstract

We have identified an open reading frame (ORF), CP530R, within the EcoRI C' fragment of the African swine fever virus (ASFV) genome that encodes a polyprotein of 62 kDa (pp62). Antisera raised against different regions of ORF CP530R recognized a polypeptide of 62 kDa in ASFV-infected cells during the late phase of virus replication, after the onset of viral DNA synthesis. Pulse-chase experiments showed that polyprotein pp62 is posttranslationally processed to give rise to two proteins of 35 kDa (p35) and 15 kDa (p15). This proteolytic processing was found to take place at the consensus sequence Gly-Gly-X through an ordered cascade of proteolytic cleavages like that which also occurs with ASFV polyprotein pp220 (C. Simón-Mateo, G. Andrés, and E. Viñuela, EMBO J. 12:2977-2987, 1993). Immunofluorescence studies showed that polyprotein pp62 is localized in the viral factories. In addition, immunoprecipitation analysis of purified virus particles showed that mature products p35 and p15 are major structural proteins. According to these results, polyprotein processing represents an essential strategy for the maturation of ASFV structural proteins.

Full Text

The Full Text of this article is available as a PDF (783.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhatti A. R., Weber J. Protease of adenovirus type 2. Subcellular localization. J Biol Chem. 1979 Dec 25;254(24):12265–12268. [PubMed] [Google Scholar]
  2. Carrascosa A. L., del Val M., Santarén J. F., Viñuela E. Purification and properties of African swine fever virus. J Virol. 1985 May;54(2):337–344. doi: 10.1128/jvi.54.2.337-344.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carrascosa J. L., Carazo J. M., Carrascosa A. L., García N., Santisteban A., Viñuela E. General morphology and capsid fine structure of African swine fever virus particles. Virology. 1984 Jan 15;132(1):160–172. doi: 10.1016/0042-6822(84)90100-4. [DOI] [PubMed] [Google Scholar]
  4. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Enjuanes L., Carrascosa A. L., Moreno M. A., Viñuela E. Titration of African swine fever (ASF) virus. J Gen Virol. 1976 Sep;32(3):471–477. doi: 10.1099/0022-1317-32-3-471. [DOI] [PubMed] [Google Scholar]
  6. González A., Talavera A., Almendral J. M., Viñuela E. Hairpin loop structure of African swine fever virus DNA. Nucleic Acids Res. 1986 Sep 11;14(17):6835–6844. doi: 10.1093/nar/14.17.6835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hellen C. U., Wimmer E. The role of proteolytic processing in the morphogenesis of virus particles. Experientia. 1992 Feb 15;48(2):201–215. doi: 10.1007/BF01923512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hingamp P. M., Leyland M. L., Webb J., Twigger S., Mayer R. J., Dixon L. K. Characterization of a ubiquitinated protein which is externally located in African swine fever virions. J Virol. 1995 Mar;69(3):1785–1793. doi: 10.1128/jvi.69.3.1785-1793.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Katz E., Moss B. Formation of a vaccinia virus structural polypeptide from a higher molecular weight precursor: inhibition by rifampicin. Proc Natl Acad Sci U S A. 1970 Jul;66(3):677–684. doi: 10.1073/pnas.66.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Keller P. M., Davison A. J., Lowe R. S., Bennett C. D., Ellis R. W. Identification and structure of the gene encoding gpII, a major glycoprotein of varicella-zoster virus. Virology. 1986 Jul 15;152(1):181–191. doi: 10.1016/0042-6822(86)90383-1. [DOI] [PubMed] [Google Scholar]
  11. Kräusslich H. G., Wimmer E. Viral proteinases. Annu Rev Biochem. 1988;57:701–754. doi: 10.1146/annurev.bi.57.070188.003413. [DOI] [PubMed] [Google Scholar]
  12. Kuznar J., Salas M. L., Viñuela E. DNA-dependent RNA polymerase in African swine fever virus. Virology. 1980 Feb;101(1):169–175. doi: 10.1016/0042-6822(80)90493-6. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lee P., Hruby D. E. Analysis of the role of the amino-terminal peptide of vaccinia virus structural protein precursors during proteolytic processing. Virology. 1995 Feb 20;207(1):229–233. doi: 10.1006/viro.1995.1069. [DOI] [PubMed] [Google Scholar]
  15. Ley V., Almendral J. M., Carbonero P., Beloso A., Viñuela E., Talavera A. Molecular cloning of African swine fever virus DNA. Virology. 1984 Mar;133(2):249–257. doi: 10.1016/0042-6822(84)90392-1. [DOI] [PubMed] [Google Scholar]
  16. López-Otín C., Simón-Mateo C., Martínez L., Viñuela E. Gly-Gly-X, a novel consensus sequence for the proteolytic processing of viral and cellular proteins. J Biol Chem. 1989 Jun 5;264(16):9107–9110. [PubMed] [Google Scholar]
  17. Santarén J. F., Viñuela E. African swine fever virus-induced polypeptides in Vero cells. Virus Res. 1986 Sep;5(4):391–405. doi: 10.1016/0168-1702(86)90031-6. [DOI] [PubMed] [Google Scholar]
  18. Sanz A., García-Barreno B., Nogal M. L., Viñuela E., Enjuanes L. Monoclonal antibodies specific for African swine fever virus proteins. J Virol. 1985 Apr;54(1):199–206. doi: 10.1128/jvi.54.1.199-206.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Simón-Mateo C., Andrés G., Viñuela E. Polyprotein processing in African swine fever virus: a novel gene expression strategy for a DNA virus. EMBO J. 1993 Jul;12(7):2977–2987. doi: 10.1002/j.1460-2075.1993.tb05960.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sogo J. M., Almendral J. M., Talavera A., Viñuela E. Terminal and internal inverted repetitions in African swine fever virus DNA. Virology. 1984 Mar;133(2):271–275. doi: 10.1016/0042-6822(84)90394-5. [DOI] [PubMed] [Google Scholar]
  21. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  22. Varshavsky A. The N-end rule. Cell. 1992 May 29;69(5):725–735. doi: 10.1016/0092-8674(92)90285-k. [DOI] [PubMed] [Google Scholar]
  23. Yáez R. J., Rodríguez J. M., Nogal M. L., Yuste L., Enríquez C., Rodriguez J. F., Viñuela E. Analysis of the complete nucleotide sequence of African swine fever virus. Virology. 1995 Apr 1;208(1):249–278. doi: 10.1006/viro.1995.1149. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES