Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Virology logoLink to Journal of Virology
. 1997 Aug;71(8):5814–5819. doi: 10.1128/jvi.71.8.5814-5819.1997

The temperature-sensitive (ts) phenotype of a cold-passaged (cp) live attenuated respiratory syncytial virus vaccine candidate, designated cpts530, results from a single amino acid substitution in the L protein.

K Juhasz 1, S S Whitehead 1, P T Bui 1, J M Biggs 1, J E Crowe 1, C A Boulanger 1, P L Collins 1, B R Murphy 1
PMCID: PMC191836  PMID: 9223470

Abstract

cpts530, a candidate live-virus vaccine, is an attenuated strain of human respiratory syncytial virus (RSV). It was derived by subjecting a cold-passaged (cp) strain of RSV to a single round of chemical mutagenesis. cpts530 is a temperature-sensitive (ts) mutant that is attenuated in mice and chimpanzees, and its ts phenotype exhibits a high level of stability during replication in both species. In the present study, the complete nucleotide sequence of cpts530 RSV was determined. The five mutations known to be present in the parent cpRSV were retained in its cpts530 derivative, and one additional nucleotide change was identified at nucleotide (nt) 10060, which resulted in a phenylalanine-to-leucine change at amino acid 521 in the large polymerase (L) protein. To determine if this single amino acid substitution was indeed responsible for the ts phenotype of cpts530, it was introduced alone or in combination with the cp mutations into the full-length cDNA clone of the wild-type A2 RSV. Analysis of infectious viruses recovered from mutant cDNAs indicated that this single mutation specified complete restriction of plaque formation of recombinant cp530 in HEp-2 cell monolayer cultures at 40 degrees C, and the level of temperature sensitivity was not influenced by the presence of the five cpRSV mutations. These findings identify the phenylalanine-to-leucine change at amino acid 521 in the L protein as the mutation that specifies the ts phenotype of cpts530. Furthermore, these findings illustrate the feasibility of using the cDNA-based recovery system to analyze and construct defined attenuated vaccine viruses.

Full Text

The Full Text of this article is available as a PDF (409.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Collins P. L., Hill M. G., Camargo E., Grosfeld H., Chanock R. M., Murphy B. R. Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5' proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11563–11567. doi: 10.1073/pnas.92.25.11563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Connors M., Crowe J. E., Jr, Firestone C. Y., Murphy B. R., Collins P. L. A cold-passaged, attenuated strain of human respiratory syncytial virus contains mutations in the F and L genes. Virology. 1995 Apr 20;208(2):478–484. doi: 10.1006/viro.1995.1178. [DOI] [PubMed] [Google Scholar]
  3. Crowe J. E., Jr, Bui P. T., Davis A. R., Chanock R. M., Murphy B. R. A further attenuated derivative of a cold-passaged temperature-sensitive mutant of human respiratory syncytial virus retains immunogenicity and protective efficacy against wild-type challenge in seronegative chimpanzees. Vaccine. 1994 Jul;12(9):783–790. doi: 10.1016/0264-410x(94)90286-0. [DOI] [PubMed] [Google Scholar]
  4. Crowe J. E., Jr, Bui P. T., London W. T., Davis A. R., Hung P. P., Chanock R. M., Murphy B. R. Satisfactorily attenuated and protective mutants derived from a partially attenuated cold-passaged respiratory syncytial virus mutant by introduction of additional attenuating mutations during chemical mutagenesis. Vaccine. 1994 Jun;12(8):691–699. doi: 10.1016/0264-410x(94)90218-6. [DOI] [PubMed] [Google Scholar]
  5. Crowe J. E., Jr, Bui P. T., Siber G. R., Elkins W. R., Chanock R. M., Murphy B. R. Cold-passaged, temperature-sensitive mutants of human respiratory syncytial virus (RSV) are highly attenuated, immunogenic, and protective in seronegative chimpanzees, even when RSV antibodies are infused shortly before immunization. Vaccine. 1995 Jun;13(9):847–855. doi: 10.1016/0264-410x(94)00074-w. [DOI] [PubMed] [Google Scholar]
  6. Crowe J. E., Jr, Collins P. L., London W. T., Chanock R. M., Murphy B. R. A comparison in chimpanzees of the immunogenicity and efficacy of live attenuated respiratory syncytial virus (RSV) temperature-sensitive mutant vaccines and vaccinia virus recombinants that express the surface glycoproteins of RSV. Vaccine. 1993 Nov;11(14):1395–1404. doi: 10.1016/0264-410x(93)90168-w. [DOI] [PubMed] [Google Scholar]
  7. Crowe J. E., Jr, Firestone C. Y., Whitehead S. S., Collins P. L., Murphy B. R. Acquisition of the ts phenotype by a chemically mutagenized cold-passaged human respiratory syncytial virus vaccine candidate results from the acquisition of a single mutation in the polymerase (L) gene. Virus Genes. 1996;13(3):269–273. doi: 10.1007/BF00366988. [DOI] [PubMed] [Google Scholar]
  8. Firestone C. Y., Whitehead S. S., Collins P. L., Murphy B. R., Crowe J. E., Jr Nucleotide sequence analysis of the respiratory syncytial virus subgroup A cold-passaged (cp) temperature sensitive (ts) cpts-248/404 live attenuated virus vaccine candidate. Virology. 1996 Nov 15;225(2):419–422. doi: 10.1006/viro.1996.0618. [DOI] [PubMed] [Google Scholar]
  9. Friedewald W. T., Forsyth B. R., Smith C. B., Gharpure M. A., Chanock R. M. Low-temperature-grown RS virus in adult volunteers. JAMA. 1968 May 20;204(8):690–694. [PubMed] [Google Scholar]
  10. Garcin D., Pelet T., Calain P., Roux L., Curran J., Kolakofsky D. A highly recombinogenic system for the recovery of infectious Sendai paramyxovirus from cDNA: generation of a novel copy-back nondefective interfering virus. EMBO J. 1995 Dec 15;14(24):6087–6094. doi: 10.1002/j.1460-2075.1995.tb00299.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kim H. W., Arrobio J. O., Pyles G., Brandt C. D., Camargo E., Chanock R. M., Parrott R. H. Clinical and immunological response of infants and children to administration of low-temperature adapted respiratory syncytial virus. Pediatrics. 1971 Nov;48(5):745–755. [PubMed] [Google Scholar]
  12. Lawson N. D., Stillman E. A., Whitt M. A., Rose J. K. Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4477–4481. doi: 10.1073/pnas.92.10.4477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Murphy B. R., Hall S. L., Kulkarni A. B., Crowe J. E., Jr, Collins P. L., Connors M., Karron R. A., Chanock R. M. An update on approaches to the development of respiratory syncytial virus (RSV) and parainfluenza virus type 3 (PIV3) vaccines. Virus Res. 1994 Apr;32(1):13–36. doi: 10.1016/0168-1702(94)90059-0. [DOI] [PubMed] [Google Scholar]
  14. Murphy B. R., Sotnikov A. V., Lawrence L. A., Banks S. M., Prince G. A. Enhanced pulmonary histopathology is observed in cotton rats immunized with formalin-inactivated respiratory syncytial virus (RSV) or purified F glycoprotein and challenged with RSV 3-6 months after immunization. Vaccine. 1990 Oct;8(5):497–502. doi: 10.1016/0264-410x(90)90253-i. [DOI] [PubMed] [Google Scholar]
  15. Radecke F., Spielhofer P., Schneider H., Kaelin K., Huber M., Dötsch C., Christiansen G., Billeter M. A. Rescue of measles viruses from cloned DNA. EMBO J. 1995 Dec 1;14(23):5773–5784. doi: 10.1002/j.1460-2075.1995.tb00266.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Richman D. D., Murphy B. R. The association of the temperature-sensitive phenotype with viral attenuation in animals and humans: implications for the development and use of live virus vaccines. Rev Infect Dis. 1979 May-Jun;1(3):413–433. doi: 10.1093/clinids/1.3.413. [DOI] [PubMed] [Google Scholar]
  17. Schnell M. J., Mebatsion T., Conzelmann K. K. Infectious rabies viruses from cloned cDNA. EMBO J. 1994 Sep 15;13(18):4195–4203. doi: 10.1002/j.1460-2075.1994.tb06739.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stec D. S., Hill M. G., 3rd, Collins P. L. Sequence analysis of the polymerase L gene of human respiratory syncytial virus and predicted phylogeny of nonsegmented negative-strand viruses. Virology. 1991 Jul;183(1):273–287. doi: 10.1016/0042-6822(91)90140-7. [DOI] [PubMed] [Google Scholar]
  19. Whelan S. P., Ball L. A., Barr J. N., Wertz G. T. Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8388–8392. doi: 10.1073/pnas.92.18.8388. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES