Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1994 Dec;55(6):1230–1241.

Analysis of HLA and Disease Susceptibility: Chromosome 6 Genes and Sex Influence Long-QT Phenotype

Lowell R Weitkamp, Arthur J Moss, Raymond A Lewis, W J Hall, Jean W MacCluer, Peter J Schwartz, Emanuela H Locati, Dan Tzivoni, G Michael Vincent, Jennifer L Robinson, Sally A Guttormsen
PMCID: PMC1918443  PMID: 7977384

Abstract

The long-QT (LQT) syndrome is a genetically complex disorder that is characterized by syncope and fatal ventricular arrhythmias. LQT syndrome, as defined by a prolonged electrocardiographic QT interval, has a higher incidence in females than in males and does not exhibit Mendelian transmission patterns in all families. Among those families that are nearly consistent with Mendelian transmission, linkage between a locus for LQT syndrome and the H-ras-1 locus on the short arm of chromosome 11 has been reported in some families but not in others. Earlier analyses suggesting that LQT syndrome might be caused by a gene in the HLA region of chromosome 6 were not confirmed by standard linkage analyses. Here, we present an analysis of HLA haplotype sharing among affected pedigree members, showing an excess of haplotype sharing in a previously published Japanese pedigree and possibly also in 15 families of European descent. The haplotypes shared by affected individuals derive from both affected and unaffected parents. In an analysis of independent (unrelated) HLA haplotypes, we also found a nonrandom distribution of HLA-DR genes in LQT syndrome patients compared with controls, suggesting an association between the LQT phenotype and specific HLA-DR genes. Our data indicate that DR2 has a protective effect and, particularly in males, that DR7 may increase susceptibility to the LQT syndrome. Thus, LQT syndrome may be influenced by genes on chromosomes 11 and 6, possibly with a sex-specific effect. These results provide a model for an effect of HLA-region genes inherited from either parent on the expression of an illness that may be determined principally by alleles at loci not linked to HLA.

Full text

PDF
1230

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benhorin J., Kalman Y. M., Medina A., Towbin J., Rave-Harel N., Dyer T. D., Blangero J., MacCluer J. W., Kerem B. S. Evidence of genetic heterogeneity in the long QT syndrome. Science. 1993 Jun 25;260(5116):1960–1962. doi: 10.1126/science.8316839. [DOI] [PubMed] [Google Scholar]
  2. Brown D. L., Gorin M. B., Weeks D. E. Efficient strategies for genomic searching using the affected-pedigree-member method of linkage analysis. Am J Hum Genet. 1994 Mar;54(3):544–552. [PMC free article] [PubMed] [Google Scholar]
  3. Caillat-Zucman S., Garchon H. J., Timsit J., Assan R., Boitard C., Djilali-Saiah I., Bougnères P., Bach J. F. Age-dependent HLA genetic heterogeneity of type 1 insulin-dependent diabetes mellitus. J Clin Invest. 1992 Dec;90(6):2242–2250. doi: 10.1172/JCI116110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Christiansen F. T., Saueracker G. C., Leaver A. L., Tokunaga K., Cameron P. U., Dawkins R. L. Characterization of MHC ancestral haplotypes associated with insulin-dependent diabetes mellitus: evidence for involvement of non-HLA genes. J Immunogenet. 1990 Dec;17(6):379–386. doi: 10.1111/j.1744-313x.1990.tb00889.x. [DOI] [PubMed] [Google Scholar]
  5. Cornall R. J., Prins J. B., Todd J. A., Pressey A., DeLarato N. H., Wicker L. S., Peterson L. B. Type 1 diabetes in mice is linked to the interleukin-1 receptor and Lsh/Ity/Bcg genes on chromosome 1. Nature. 1991 Sep 19;353(6341):262–265. doi: 10.1038/353262a0. [DOI] [PubMed] [Google Scholar]
  6. Curran M., Atkinson D., Timothy K., Vincent G. M., Moss A. J., Leppert M., Keating M. Locus heterogeneity of autosomal dominant long QT syndrome. J Clin Invest. 1993 Aug;92(2):799–803. doi: 10.1172/JCI116653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Degli-Esposti M. A., Abraham L. J., McCann V., Spies T., Christiansen F. T., Dawkins R. L. Ancestral haplotypes reveal the role of the central MHC in the immunogenetics of IDDM. Immunogenetics. 1992;36(6):345–356. doi: 10.1007/BF00218041. [DOI] [PubMed] [Google Scholar]
  8. Ewing D. J., Boland O., Neilson J. M., Cho C. G., Clarke B. F. Autonomic neuropathy, QT interval lengthening, and unexpected deaths in male diabetic patients. Diabetologia. 1991 Mar;34(3):182–185. doi: 10.1007/BF00418273. [DOI] [PubMed] [Google Scholar]
  9. Garchon H. J., Bedossa P., Eloy L., Bach J. F. Identification and mapping to chromosome 1 of a susceptibility locus for periinsulitis in non-obese diabetic mice. Nature. 1991 Sep 19;353(6341):260–262. doi: 10.1038/353260a0. [DOI] [PubMed] [Google Scholar]
  10. Hashiba K. Hereditary QT prolongation syndrome in Japan: genetic analysis and pathological findings of the conducting system. Jpn Circ J. 1978 Oct;42(10):1133–1150. doi: 10.1253/jcj.42.1133. [DOI] [PubMed] [Google Scholar]
  11. Itoh S., Munemura S., Satoh H. A study of the inheritance pattern of Romano-Ward syndrome. Prolonged Q-T interval, syncope, and sudden death. Clin Pediatr (Phila) 1982 Jan;21(1):20–24. doi: 10.1177/000992288202100103. [DOI] [PubMed] [Google Scholar]
  12. Keating M., Atkinson D., Dunn C., Timothy K., Vincent G. M., Leppert M. Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey ras-1 gene. Science. 1991 May 3;252(5006):704–706. doi: 10.1126/science.1673802. [DOI] [PubMed] [Google Scholar]
  13. Keating M., Dunn C., Atkinson D., Timothy K., Vincent G. M., Leppert M. Consistent linkage of the long-QT syndrome to the Harvey ras-1 locus on chromosome 11. Am J Hum Genet. 1991 Dec;49(6):1335–1339. [PMC free article] [PubMed] [Google Scholar]
  14. Khalil I., Deschamps I., Lepage V., al-Daccak R., Degos L., Hors J. Dose effect of cis- and trans-encoded HLA-DQ alpha beta heterodimers in IDDM susceptibility. Diabetes. 1992 Mar;41(3):378–384. doi: 10.2337/diab.41.3.378. [DOI] [PubMed] [Google Scholar]
  15. Kwok W. W., Mickelson E., Masewicz S., Milner E. C., Hansen J., Nepom G. T. Polymorphic DQ alpha and DQ beta interactions dictate HLA class II determinants of allo-recognition. J Exp Med. 1990 Jan 1;171(1):85–95. doi: 10.1084/jem.171.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LANCASTER H. O. The combination of probabilities arising from data in discrete distributions. Biometrika. 1949 Dec;36(3-4):370–382. [PubMed] [Google Scholar]
  17. Lamm L. U., Weitkamp L. R., Jensson O., Pedersen G. B., Kissmeyer-Nielsen F. On the mapping of PGM3, GLO and HLA. Tissue Antigens. 1978 Feb;11(2):132–138. doi: 10.1111/j.1399-0039.1978.tb01237.x. [DOI] [PubMed] [Google Scholar]
  18. Moss A. J. Prolonged QT-interval syndromes. JAMA. 1986 Dec 5;256(21):2985–2987. [PubMed] [Google Scholar]
  19. Moss A. J., Schwartz P. J., Crampton R. S., Tzivoni D., Locati E. H., MacCluer J., Hall W. J., Weitkamp L., Vincent G. M., Garson A., Jr The long QT syndrome. Prospective longitudinal study of 328 families. Circulation. 1991 Sep;84(3):1136–1144. doi: 10.1161/01.cir.84.3.1136. [DOI] [PubMed] [Google Scholar]
  20. ROMANO C. CONGENITAL CARDIAC ARRHYTHMIA. Lancet. 1965 Mar 20;1(7386):658–659. doi: 10.1016/s0140-6736(65)91761-7. [DOI] [PubMed] [Google Scholar]
  21. ROMANO C., GEMME G., PONGIGLIONE R. ARITMIE CARDIACHE RARE DELL'ETA' PEDIATRICA. II. ACCESSI SINCOPALI PER FIBRILLAZIONE VENTRICOLARE PAROSSISTICA. (PRESENTAZIONE DEL PRIMO CASO DELLA LETTERATURA PEDIATRICA ITALIANA) Clin Pediatr (Bologna) 1963 Sep;45:656–683. [PubMed] [Google Scholar]
  22. Raffel L. J., Hitman G. A., Toyoda H., Karam J. H., Bell G. I., Rotter J. I. The aggregation of the 5' insulin gene polymorphism in insulin dependent (type I) diabetes mellitus families. J Med Genet. 1992 Jul;29(7):447–450. [PMC free article] [PubMed] [Google Scholar]
  23. Rønningen K. S., Spurkland A., Iwe T., Vartdal F., Thorsby E. Distribution of HLA-DRB1, -DQA1 and -DQB1 alleles and DQA1-DQB1 genotypes among Norwegian patients with insulin-dependent diabetes mellitus. Tissue Antigens. 1991 Mar;37(3):105–111. doi: 10.1111/j.1399-0039.1991.tb01854.x. [DOI] [PubMed] [Google Scholar]
  24. Schwartz P. J., Periti M., Malliani A. The long Q-T syndrome. Am Heart J. 1975 Mar;89(3):378–390. doi: 10.1016/0002-8703(75)90089-7. [DOI] [PubMed] [Google Scholar]
  25. Sheehy M. J., Scharf S. J., Rowe J. R., Neme de Gimenez M. H., Meske L. M., Erlich H. A., Nepom B. S. A diabetes-susceptible HLA haplotype is best defined by a combination of HLA-DR and -DQ alleles. J Clin Invest. 1989 Mar;83(3):830–835. doi: 10.1172/JCI113965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tienari P. J., Tuomilehto-Wolf E., Tuomilehto J., Peltonen L. HLA haplotypes in type 1 (insulin-dependent) diabetes mellitus: molecular analysis of the HLA-DQ locus. The DIME Study Group. Diabetologia. 1992 Mar;35(3):254–260. doi: 10.1007/BF00400926. [DOI] [PubMed] [Google Scholar]
  27. Todd J. A., Aitman T. J., Cornall R. J., Ghosh S., Hall J. R., Hearne C. M., Knight A. M., Love J. M., McAleer M. A., Prins J. B. Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature. 1991 Jun 13;351(6327):542–547. doi: 10.1038/351542a0. [DOI] [PubMed] [Google Scholar]
  28. Vincent G. M. Hypothesis for the molecular physiology of the Romano-Ward long QT syndrome. J Am Coll Cardiol. 1992 Aug;20(2):500–503. doi: 10.1016/0735-1097(92)90123-5. [DOI] [PubMed] [Google Scholar]
  29. Vincent G. M., Timothy K. W., Leppert M., Keating M. The spectrum of symptoms and QT intervals in carriers of the gene for the long-QT syndrome. N Engl J Med. 1992 Sep 17;327(12):846–852. doi: 10.1056/NEJM199209173271204. [DOI] [PubMed] [Google Scholar]
  30. WARD O. C. A NEW FAMILIAL CARDIAC SYNDROME IN CHILDREN. J Ir Med Assoc. 1964 Apr;54:103–106. [PubMed] [Google Scholar]
  31. Weeks D. E., Lange K. A multilocus extension of the affected-pedigree-member method of linkage analysis. Am J Hum Genet. 1992 Apr;50(4):859–868. [PMC free article] [PubMed] [Google Scholar]
  32. Weitkamp L. R. HLA and disease: predictions for HLA haplotype sharing in families. Am J Hum Genet. 1981 Sep;33(5):776–784. [PMC free article] [PubMed] [Google Scholar]
  33. Weitkamp L. R., Lewis R. A. PEDSCORE analysis of identical by descent (IBD) marker allele distributions among family members with cutaneous melanoma. Cytogenet Cell Genet. 1992;59(2-3):231–233. doi: 10.1159/000133256. [DOI] [PubMed] [Google Scholar]
  34. Weitkamp L. R., Stancer H. C., Persad E., Flood C., Guttormsen S. Depressive disorders and HLA: a gene on chromosome 6 that can affect behavior. N Engl J Med. 1981 Nov 26;305(22):1301–1306. doi: 10.1056/NEJM198111263052201. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES