Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Aug;71(8):5942–5951. doi: 10.1128/jvi.71.8.5942-5951.1997

Two classes of human papillomavirus type 16 E1 mutants suggest pleiotropic conformational constraints affecting E1 multimerization, E2 interaction, and interaction with cellular proteins.

T Yasugi 1, M Vidal 1, H Sakai 1, P M Howley 1, J D Benson 1
PMCID: PMC191850  PMID: 9223484

Abstract

Random mutagenesis of human papillomavirus type 16 (HPV16) E1 was used to generate E1 missense mutants defective for interaction with either hUBC9 or 16E1-BP, two cDNAs encoding proteins that have been identified by their ability to interact with HPV16 E1 in two-hybrid assays. hUBC9, the human counterpart of Saccharomyces cerevisiae UBC9, is a ubiquitin-conjugating enzyme known to be involved in cell cycle progression. 16E1-BP encodes a protein of no known function but does contain an ATPase signature motif. Eight hUBC9 or 16E1-BP interaction-defective HPV16 E1 missense mutants were identified and characterized for origin-dependent transient DNA replication, ATPase activity, and various protein-protein interaction phenotypes. Six of these mutant E1 proteins were significantly impaired for replication. Among these, two classes of replication-defective HPV16 E1 missense mutants were observed. One class, represented by the S330R replication-defective mutant (containing an S-to-R change at position 330), remained competent for all protein-protein interactions tested, with the exception of hUBC9 association. Furthermore, this mutant, unlike the other replication-defective HPV16 E1 missense mutants, had a strong dominant negative replication phenotype in transient-replication assays. The other class, represented by five of the missense mutants, was defective for multiple protein-protein interactions, usually including, but not limited to, the interaction defect for which each mutant was originally selected. In many cases, a single missense mutation in one region of HPV16 E1 had pleiotropic effects, even upon activities thought to be associated with other domains of HPV16 E1. This suggests that E1 proteins are not modular but may instead be composed of multiple structurally and/or functionally interdependent domains.

Full Text

The Full Text of this article is available as a PDF (645.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belyavskyi M., Miller J., Belyavaskaya E., Wilson V. BPV E1 protein alters the kinetics of cell cycle entry of serum starved mouse fibroblasts. Cytometry. 1995 Nov 1;21(3):257–264. doi: 10.1002/cyto.990210306. [DOI] [PubMed] [Google Scholar]
  2. Belyavskyi M., Westerman M., DiMichele L., Wilson V. G. Perturbation of the host cell cycle and DNA replication by the bovine papillomavirus replication protein E1. Virology. 1996 May 1;219(1):206–219. doi: 10.1006/viro.1996.0238. [DOI] [PubMed] [Google Scholar]
  3. Benson J. D., Howley P. M. Amino-terminal domains of the bovine papillomavirus type 1 E1 and E2 proteins participate in complex formation. J Virol. 1995 Jul;69(7):4364–4372. doi: 10.1128/jvi.69.7.4364-4372.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bentivoglio C. M., Zhu J., Cole C. N. Mechanisms of interference with simian virus 40 (SV40) DNA replication by trans-dominant mutants of SV40 large T antigen. J Virol. 1992 Jul;66(7):4209–4219. doi: 10.1128/jvi.66.7.4209-4219.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Betting J., Seufert W. A yeast Ubc9 mutant protein with temperature-sensitive in vivo function is subject to conditional proteolysis by a ubiquitin- and proteasome-dependent pathway. J Biol Chem. 1996 Oct 18;271(42):25790–25796. doi: 10.1074/jbc.271.42.25790. [DOI] [PubMed] [Google Scholar]
  6. Blitz I. L., Laimins L. A. The 68-kilodalton E1 protein of bovine papillomavirus is a DNA binding phosphoprotein which associates with the E2 transcriptional activator in vitro. J Virol. 1991 Feb;65(2):649–656. doi: 10.1128/jvi.65.2.649-656.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blondel M., Mann C. G2 cyclins are required for the degradation of G1 cyclins in yeast. Nature. 1996 Nov 21;384(6606):279–282. doi: 10.1038/384279a0. [DOI] [PubMed] [Google Scholar]
  8. Boeke J. D., LaCroute F., Fink G. R. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984;197(2):345–346. doi: 10.1007/BF00330984. [DOI] [PubMed] [Google Scholar]
  9. Bonne-Andrea C., Santucci S., Clertant P. Bovine papillomavirus E1 protein can, by itself, efficiently drive multiple rounds of DNA synthesis in vitro. J Virol. 1995 May;69(5):3201–3205. doi: 10.1128/jvi.69.5.3201-3205.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bonne-Andrea C., Santucci S., Clertant P., Tillier F. Bovine papillomavirus E1 protein binds specifically DNA polymerase alpha but not replication protein A. J Virol. 1995 Apr;69(4):2341–2350. doi: 10.1128/jvi.69.4.2341-2350.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clertant P., Seif I. A common function for polyoma virus large-T and papillomavirus E1 proteins? Nature. 1984 Sep 20;311(5983):276–279. doi: 10.1038/311276a0. [DOI] [PubMed] [Google Scholar]
  12. Del Vecchio A. M., Romanczuk H., Howley P. M., Baker C. C. Transient replication of human papillomavirus DNAs. J Virol. 1992 Oct;66(10):5949–5958. doi: 10.1128/jvi.66.10.5949-5958.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Farber J. M., Peden K. W., Nathans D. trans-dominant defective mutants of simian virus 40 T antigen. J Virol. 1987 Feb;61(2):436–445. doi: 10.1128/jvi.61.2.436-445.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gillette T. G., Lusky M., Borowiec J. A. Induction of structural changes in the bovine papillomavirus type 1 origin of replication by the viral E1 and E2 proteins. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8846–8850. doi: 10.1073/pnas.91.19.8846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gopalakrishnan V., Khan S. A. E1 protein of human papillomavirus type 1a is sufficient for initiation of viral DNA replication. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9597–9601. doi: 10.1073/pnas.91.20.9597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Göttlicher M., Heck S., Doucas V., Wade E., Kullmann M., Cato A. C., Evans R. M., Herrlich P. Interaction of the Ubc9 human homologue with c-Jun and with the glucocorticoid receptor. Steroids. 1996 Apr;61(4):257–262. doi: 10.1016/0039-128x(96)00032-3. [DOI] [PubMed] [Google Scholar]
  17. Hateboer G., Hijmans E. M., Nooij J. B., Schlenker S., Jentsch S., Bernards R. mUBC9, a novel adenovirus E1A-interacting protein that complements a yeast cell cycle defect. J Biol Chem. 1996 Oct 18;271(42):25906–25911. doi: 10.1074/jbc.271.42.25906. [DOI] [PubMed] [Google Scholar]
  18. Herskowitz I. Functional inactivation of genes by dominant negative mutations. Nature. 1987 Sep 17;329(6136):219–222. doi: 10.1038/329219a0. [DOI] [PubMed] [Google Scholar]
  19. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
  20. Hughes F. J., Romanos M. A. E1 protein of human papillomavirus is a DNA helicase/ATPase. Nucleic Acids Res. 1993 Dec 25;21(25):5817–5823. doi: 10.1093/nar/21.25.5817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jenkins O., Earnshaw D., Sarginson G., Del Vecchio A., Tsai J., Kallender H., Amegadzie B., Browne M. Characterization of the helicase and ATPase activity of human papillomavirus type 6b E1 protein. J Gen Virol. 1996 Aug;77(Pt 8):1805–1809. doi: 10.1099/0022-1317-77-8-1805. [DOI] [PubMed] [Google Scholar]
  22. Jiang W., Koltin Y. Two-hybrid interaction of a human UBC9 homolog with centromere proteins of Saccharomyces cerevisiae. Mol Gen Genet. 1996 May 23;251(2):153–160. doi: 10.1007/BF02172913. [DOI] [PubMed] [Google Scholar]
  23. Kaelin W. G., Jr, Krek W., Sellers W. R., DeCaprio J. A., Ajchenbaum F., Fuchs C. S., Chittenden T., Li Y., Farnham P. J., Blanar M. A. Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell. 1992 Jul 24;70(2):351–364. doi: 10.1016/0092-8674(92)90108-o. [DOI] [PubMed] [Google Scholar]
  24. Kovalenko O. V., Plug A. W., Haaf T., Gonda D. K., Ashley T., Ward D. C., Radding C. M., Golub E. I. Mammalian ubiquitin-conjugating enzyme Ubc9 interacts with Rad51 recombination protein and localizes in synaptonemal complexes. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2958–2963. doi: 10.1073/pnas.93.7.2958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Le Moal M. A., Yaniv M., Thierry F. The bovine papillomavirus type 1 (BPV1) replication protein E1 modulates transcriptional activation by interacting with BPV1 E2. J Virol. 1994 Feb;68(2):1085–1093. doi: 10.1128/jvi.68.2.1085-1093.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lee J. W., Choi H. S., Gyuris J., Brent R., Moore D. D. Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol Endocrinol. 1995 Feb;9(2):243–254. doi: 10.1210/mend.9.2.7776974. [DOI] [PubMed] [Google Scholar]
  27. Lentz M. R., Pak D., Mohr I., Botchan M. R. The E1 replication protein of bovine papillomavirus type 1 contains an extended nuclear localization signal that includes a p34cdc2 phosphorylation site. J Virol. 1993 Mar;67(3):1414–1423. doi: 10.1128/jvi.67.3.1414-1423.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lusky M., Fontane E. Formation of the complex of bovine papillomavirus E1 and E2 proteins is modulated by E2 phosphorylation and depends upon sequences within the carboxyl terminus of E1. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6363–6367. doi: 10.1073/pnas.88.14.6363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lusky M., Hurwitz J., Seo Y. S. Cooperative assembly of the bovine papilloma virus E1 and E2 proteins on the replication origin requires an intact E2 binding site. J Biol Chem. 1993 Jul 25;268(21):15795–15803. [PubMed] [Google Scholar]
  30. Lusky M., Hurwitz J., Seo Y. S. The bovine papillomavirus E2 protein modulates the assembly of but is not stably maintained in a replication-competent multimeric E1-replication origin complex. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8895–8899. doi: 10.1073/pnas.91.19.8895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Melendy T., Sedman J., Stenlund A. Cellular factors required for papillomavirus DNA replication. J Virol. 1995 Dec;69(12):7857–7867. doi: 10.1128/jvi.69.12.7857-7867.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mohr I. J., Clark R., Sun S., Androphy E. J., MacPherson P., Botchan M. R. Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science. 1990 Dec 21;250(4988):1694–1699. doi: 10.1126/science.2176744. [DOI] [PubMed] [Google Scholar]
  33. Monini P., de Lellis L., Borgatti P., Hassan-Omran M., Cassai E. Activation of eukaryotic transcriptional promoters by the bovine papillomavirus E1-replication factor. Intervirology. 1993;36(4):245–252. doi: 10.1159/000150343. [DOI] [PubMed] [Google Scholar]
  34. Müller F., Seo Y. S., Hurwitz J. Replication of bovine papillomavirus type 1 origin-containing DNA in crude extracts and with purified proteins. J Biol Chem. 1994 Jun 24;269(25):17086–17094. [PubMed] [Google Scholar]
  35. Nallaseth F. S., DePamphilis M. L. Papillomavirus contains cis-acting sequences that can suppress but not regulate origins of DNA replication. J Virol. 1994 May;68(5):3051–3064. doi: 10.1128/jvi.68.5.3051-3064.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Park P., Copeland W., Yang L., Wang T., Botchan M. R., Mohr I. J. The cellular DNA polymerase alpha-primase is required for papillomavirus DNA replication and associates with the viral E1 helicase. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8700–8704. doi: 10.1073/pnas.91.18.8700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Raj K., Stanley M. A. The ATP-binding and ATPase activities of human papillomavirus type 16 E1 are significantly weakened by the absence of prolines in its ATP-binding domain. J Gen Virol. 1995 Dec;76(Pt 12):2949–2956. doi: 10.1099/0022-1317-76-12-2949. [DOI] [PubMed] [Google Scholar]
  38. Romanczuk H., Howley P. M. Disruption of either the E1 or the E2 regulatory gene of human papillomavirus type 16 increases viral immortalization capacity. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3159–3163. doi: 10.1073/pnas.89.7.3159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sakai H., Yasugi T., Benson J. D., Dowhanick J. J., Howley P. M. Targeted mutagenesis of the human papillomavirus type 16 E2 transactivation domain reveals separable transcriptional activation and DNA replication functions. J Virol. 1996 Mar;70(3):1602–1611. doi: 10.1128/jvi.70.3.1602-1611.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sandler A. B., Vande Pol S. B., Spalholz B. A. Repression of bovine papillomavirus type 1 transcription by the E1 replication protein. J Virol. 1993 Sep;67(9):5079–5087. doi: 10.1128/jvi.67.9.5079-5087.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schnall R., Mannhaupt G., Stucka R., Tauer R., Ehnle S., Schwarzlose C., Vetter I., Feldmann H. Identification of a set of yeast genes coding for a novel family of putative ATPases with high similarity to constituents of the 26S protease complex. Yeast. 1994 Sep;10(9):1141–1155. doi: 10.1002/yea.320100903. [DOI] [PubMed] [Google Scholar]
  42. Sedman J., Stenlund A. Co-operative interaction between the initiator E1 and the transcriptional activator E2 is required for replicator specific DNA replication of bovine papillomavirus in vivo and in vitro. EMBO J. 1995 Dec 15;14(24):6218–6228. doi: 10.1002/j.1460-2075.1995.tb00312.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sedman J., Stenlund A. The initiator protein E1 binds to the bovine papillomavirus origin of replication as a trimeric ring-like structure. EMBO J. 1996 Sep 16;15(18):5085–5092. [PMC free article] [PubMed] [Google Scholar]
  44. Seo Y. S., Müller F., Lusky M., Gibbs E., Kim H. Y., Phillips B., Hurwitz J. Bovine papilloma virus (BPV)-encoded E2 protein enhances binding of E1 protein to the BPV replication origin. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2865–2869. doi: 10.1073/pnas.90.7.2865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Seo Y. S., Müller F., Lusky M., Hurwitz J. Bovine papilloma virus (BPV)-encoded E1 protein contains multiple activities required for BPV DNA replication. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):702–706. doi: 10.1073/pnas.90.2.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Seufert W., Futcher B., Jentsch S. Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature. 1995 Jan 5;373(6509):78–81. doi: 10.1038/373078a0. [DOI] [PubMed] [Google Scholar]
  47. Sverdrup F., Khan S. A. Replication of human papillomavirus (HPV) DNAs supported by the HPV type 18 E1 and E2 proteins. J Virol. 1994 Jan;68(1):505–509. doi: 10.1128/jvi.68.1.505-509.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Thorner L. K., Lim D. A., Botchan M. R. DNA-binding domain of bovine papillomavirus type 1 E1 helicase: structural and functional aspects. J Virol. 1993 Oct;67(10):6000–6014. doi: 10.1128/jvi.67.10.6000-6014.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Ustav M., Stenlund A. Transient replication of BPV-1 requires two viral polypeptides encoded by the E1 and E2 open reading frames. EMBO J. 1991 Feb;10(2):449–457. doi: 10.1002/j.1460-2075.1991.tb07967.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Vidal M., Brachmann R. K., Fattaey A., Harlow E., Boeke J. D. Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10315–10320. doi: 10.1073/pnas.93.19.10315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Vidal M., Braun P., Chen E., Boeke J. D., Harlow E. Genetic characterization of a mammalian protein-protein interaction domain by using a yeast reverse two-hybrid system. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10321–10326. doi: 10.1073/pnas.93.19.10321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wang Z. Y., Qiu Q. Q., Seufert W., Taguchi T., Testa J. R., Whitmore S. A., Callen D. F., Welsh D., Shenk T., Deuel T. F. Molecular cloning of the cDNA and chromosome localization of the gene for human ubiquitin-conjugating enzyme 9. J Biol Chem. 1996 Oct 4;271(40):24811–24816. doi: 10.1074/jbc.271.40.24811. [DOI] [PubMed] [Google Scholar]
  54. Yang L., Li R., Mohr I. J., Clark R., Botchan M. R. Activation of BPV-1 replication in vitro by the transcription factor E2. Nature. 1991 Oct 17;353(6345):628–632. doi: 10.1038/353628a0. [DOI] [PubMed] [Google Scholar]
  55. Yang L., Mohr I., Fouts E., Lim D. A., Nohaile M., Botchan M. The E1 protein of bovine papilloma virus 1 is an ATP-dependent DNA helicase. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5086–5090. doi: 10.1073/pnas.90.11.5086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Yasugi T., Benson J. D., Sakai H., Vidal M., Howley P. M. Mapping and characterization of the interaction domains of human papillomavirus type 16 E1 and E2 proteins. J Virol. 1997 Feb;71(2):891–899. doi: 10.1128/jvi.71.2.891-899.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Yasugi T., Howley P. M. Identification of the structural and functional human homolog of the yeast ubiquitin conjugating enzyme UBC9. Nucleic Acids Res. 1996 Jun 1;24(11):2005–2010. doi: 10.1093/nar/24.11.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES