Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Aug;71(8):6083–6093. doi: 10.1128/jvi.71.8.6083-6093.1997

Glycoprotein D of herpes simplex virus (HSV) binds directly to HVEM, a member of the tumor necrosis factor receptor superfamily and a mediator of HSV entry.

J C Whitbeck 1, C Peng 1, H Lou 1, R Xu 1, S H Willis 1, M Ponce de Leon 1, T Peng 1, A V Nicola 1, R I Montgomery 1, M S Warner 1, A M Soulika 1, L A Spruce 1, W T Moore 1, J D Lambris 1, P G Spear 1, G H Cohen 1, R J Eisenberg 1
PMCID: PMC191868  PMID: 9223502

Abstract

Glycoprotein D (gD) is a structural component of the herpes simplex virus (HSV) envelope which is essential for virus entry into host cells. Chinese hamster ovary (CHO-K1) cells are one of the few cell types which are nonpermissive for the entry of many HSV strains. However, when these cells are transformed with the gene for the herpesvirus entry mediator (HVEM), the resulting cells, CHO-HVEM12, are permissive for many HSV strains, such as HSV-1(KOS). By virtue of its four cysteine-rich pseudorepeats, HVEM is a member of the tumor necrosis factor receptor superfamily of proteins. Recombinant forms of gD and HVEM, gD-1(306t) and HVEM(200t), respectively, were used to demonstrate a specific physical interaction between these two proteins. This interaction was dependent on native gD conformation but independent of its N-linked oligosaccharides, as expected from previous structure-function studies. Recombinant forms of gD derived from HSV-1(KOS)rid1 and HSV-1(ANG) did not bind to HVEM(200t), explaining the inability of these viruses to infect CHO-HVEM12 cells. A variant gD protein, gD-1(delta290-299t), showed enhanced binding to HVEM(200t) relative to the binding of gD-1(306t). Competition studies showed that gD-1(delta290-299t) and gD-1(306t) bound to the same region of HVEM(200t), suggesting that the differences in binding to HVEM are due to differences in affinity. These differences were also reflected in the ability of gD-1(delta290-299t) but not gD-1(306t) to block HSV type 1 infection of CHO-HVEM12 cells. By gel filtration chromatography, the complex between gD-1(delta290-299t) and HVEM(200t) had a molecular mass of 113 kDa and a molar ratio of 1:2. We conclude that HVEM interacts directly with gD, suggesting that HVEM is a receptor for virion gD and that the interaction between these proteins is a step in HSV entry into HVEM-expressing cells.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker S. J., Reddy E. P. Transducers of life and death: TNF receptor superfamily and associated proteins. Oncogene. 1996 Jan 4;12(1):1–9. [PubMed] [Google Scholar]
  2. Banner D. W., D'Arcy A., Janes W., Gentz R., Schoenfeld H. J., Broger C., Loetscher H., Lesslauer W. Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell. 1993 May 7;73(3):431–445. doi: 10.1016/0092-8674(93)90132-a. [DOI] [PubMed] [Google Scholar]
  3. Brunetti C. R., Burke R. L., Hoflack B., Ludwig T., Dingwell K. S., Johnson D. C. Role of mannose-6-phosphate receptors in herpes simplex virus entry into cells and cell-to-cell transmission. J Virol. 1995 Jun;69(6):3517–3528. doi: 10.1128/jvi.69.6.3517-3528.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brunetti C. R., Burke R. L., Kornfeld S., Gregory W., Masiarz F. R., Dingwell K. S., Johnson D. C. Herpes simplex virus glycoprotein D acquires mannose 6-phosphate residues and binds to mannose 6-phosphate receptors. J Biol Chem. 1994 Jun 24;269(25):17067–17074. [PubMed] [Google Scholar]
  5. Campadelli-Fiume G., Arsenakis M., Farabegoli F., Roizman B. Entry of herpes simplex virus 1 in BJ cells that constitutively express viral glycoprotein D is by endocytosis and results in degradation of the virus. J Virol. 1988 Jan;62(1):159–167. doi: 10.1128/jvi.62.1.159-167.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Campadelli-Fiume G., Qi S., Avitabile E., Foà-Tomasi L., Brandimarti R., Roizman B. Glycoprotein D of herpes simplex virus encodes a domain which precludes penetration of cells expressing the glycoprotein by superinfecting herpes simplex virus. J Virol. 1990 Dec;64(12):6070–6079. doi: 10.1128/jvi.64.12.6070-6079.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chiang H. Y., Cohen G. H., Eisenberg R. J. Identification of functional regions of herpes simplex virus glycoprotein gD by using linker-insertion mutagenesis. J Virol. 1994 Apr;68(4):2529–2543. doi: 10.1128/jvi.68.4.2529-2543.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cohen G. H., Dietzschold B., Ponce de Leon M., Long D., Golub E., Varrichio A., Pereira L., Eisenberg R. J. Localization and synthesis of an antigenic determinant of herpes simplex virus glycoprotein D that stimulates the production of neutralizing antibody. J Virol. 1984 Jan;49(1):102–108. doi: 10.1128/jvi.49.1.102-108.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohen G. H., Muggeridge M. I., Long D., Sodora D. A., Eisenberg R. J. Structural and functional studies of herpes simplex virus glycoprotein D. Adv Exp Med Biol. 1992;327:217–228. doi: 10.1007/978-1-4615-3410-5_24. [DOI] [PubMed] [Google Scholar]
  10. Cunningham B. C., Ultsch M., De Vos A. M., Mulkerrin M. G., Clauser K. R., Wells J. A. Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule. Science. 1991 Nov 8;254(5033):821–825. doi: 10.1126/science.1948064. [DOI] [PubMed] [Google Scholar]
  11. Dean H. J., Terhune S. S., Shieh M. T., Susmarski N., Spear P. G. Single amino acid substitutions in gD of herpes simplex virus 1 confer resistance to gD-mediated interference and cause cell-type-dependent alterations in infectivity. Virology. 1994 Feb 15;199(1):67–80. doi: 10.1006/viro.1994.1098. [DOI] [PubMed] [Google Scholar]
  12. Dean H. J., Warner M. S., Terhune S. S., Johnson R. M., Spear P. G. Viral determinants of the variable sensitivity of herpes simplex virus strains to gD-mediated interference. J Virol. 1995 Aug;69(8):5171–5176. doi: 10.1128/jvi.69.8.5171-5176.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dubin G., Fishman N. O., Eisenberg R. J., Cohen G. H., Friedman H. M. The role of herpes simplex virus glycoproteins in immune evasion. Curr Top Microbiol Immunol. 1992;179:111–120. doi: 10.1007/978-3-642-77247-4_7. [DOI] [PubMed] [Google Scholar]
  14. Dubin G., Jiang H. Expression of herpes simplex virus type 1 glycoprotein L (gL) in transfected mammalian cells: evidence that gL is not independently anchored to cell membranes. J Virol. 1995 Jul;69(7):4564–4568. doi: 10.1128/jvi.69.7.4564-4568.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Eisenberg R. J., Ponce de Leon M., Friedman H. M., Fries L. F., Frank M. M., Hastings J. C., Cohen G. H. Complement component C3b binds directly to purified glycoprotein C of herpes simplex virus types 1 and 2. Microb Pathog. 1987 Dec;3(6):423–435. doi: 10.1016/0882-4010(87)90012-x. [DOI] [PubMed] [Google Scholar]
  16. Fuller A. O., Lee W. C. Herpes simplex virus type 1 entry through a cascade of virus-cell interactions requires different roles of gD and gH in penetration. J Virol. 1992 Aug;66(8):5002–5012. doi: 10.1128/jvi.66.8.5002-5012.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gilbert J. M., Bates P., Varmus H. E., White J. M. The receptor for the subgroup A avian leukosis-sarcoma viruses binds to subgroup A but not to subgroup C envelope glycoprotein. J Virol. 1994 Sep;68(9):5623–5628. doi: 10.1128/jvi.68.9.5623-5628.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Herold B. C., Visalli R. J., Susmarski N., Brandt C. R., Spear P. G. Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B. J Gen Virol. 1994 Jun;75(Pt 6):1211–1222. doi: 10.1099/0022-1317-75-6-1211. [DOI] [PubMed] [Google Scholar]
  19. Herold B. C., WuDunn D., Soltys N., Spear P. G. Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J Virol. 1991 Mar;65(3):1090–1098. doi: 10.1128/jvi.65.3.1090-1098.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hillenkamp F., Karas M., Beavis R. C., Chait B. T. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem. 1991 Dec 15;63(24):1193A–1203A. doi: 10.1021/ac00024a002. [DOI] [PubMed] [Google Scholar]
  21. Huang T., Campadelli-Fiume G. Anti-idiotypic antibodies mimicking glycoprotein D of herpes simplex virus identify a cellular protein required for virus spread from cell to cell and virus-induced polykaryocytosis. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1836–1840. doi: 10.1073/pnas.93.5.1836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Isola V. J., Eisenberg R. J., Siebert G. R., Heilman C. J., Wilcox W. C., Cohen G. H. Fine mapping of antigenic site II of herpes simplex virus glycoprotein D. J Virol. 1989 May;63(5):2325–2334. doi: 10.1128/jvi.63.5.2325-2334.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Izumi K. M., Stevens J. G. Molecular and biological characterization of a herpes simplex virus type 1 (HSV-1) neuroinvasiveness gene. J Exp Med. 1990 Aug 1;172(2):487–496. doi: 10.1084/jem.172.2.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Johnson D. C., Burke R. L., Gregory T. Soluble forms of herpes simplex virus glycoprotein D bind to a limited number of cell surface receptors and inhibit virus entry into cells. J Virol. 1990 Jun;64(6):2569–2576. doi: 10.1128/jvi.64.6.2569-2576.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Johnson D. C., Ligas M. W. Herpes simplex viruses lacking glycoprotein D are unable to inhibit virus penetration: quantitative evidence for virus-specific cell surface receptors. J Virol. 1988 Dec;62(12):4605–4612. doi: 10.1128/jvi.62.12.4605-4612.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Johnson R. M., Spear P. G. Herpes simplex virus glycoprotein D mediates interference with herpes simplex virus infection. J Virol. 1989 Feb;63(2):819–827. doi: 10.1128/jvi.63.2.819-827.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kaner R. J., Baird A., Mansukhani A., Basilico C., Summers B. D., Florkiewicz R. Z., Hajjar D. P. Fibroblast growth factor receptor is a portal of cellular entry for herpes simplex virus type 1. Science. 1990 Jun 15;248(4961):1410–1413. doi: 10.1126/science.2162560. [DOI] [PubMed] [Google Scholar]
  28. Lee W. C., Fuller A. O. Herpes simplex virus type 1 and pseudorabies virus bind to a common saturable receptor on Vero cells that is not heparan sulfate. J Virol. 1993 Sep;67(9):5088–5097. doi: 10.1128/jvi.67.9.5088-5097.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Loetscher H., Gentz R., Zulauf M., Lustig A., Tabuchi H., Schlaeger E. J., Brockhaus M., Gallati H., Manneberg M., Lesslauer W. Recombinant 55-kDa tumor necrosis factor (TNF) receptor. Stoichiometry of binding to TNF alpha and TNF beta and inhibition of TNF activity. J Biol Chem. 1991 Sep 25;266(27):18324–18329. [PubMed] [Google Scholar]
  30. Long D., Wilcox W. C., Abrams W. R., Cohen G. H., Eisenberg R. J. Disulfide bond structure of glycoprotein D of herpes simplex virus types 1 and 2. J Virol. 1992 Nov;66(11):6668–6685. doi: 10.1128/jvi.66.11.6668-6685.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Manservigi R., Grossi M. P., Gualandri R., Balboni P. G., Marchini A., Rotola A., Rimessi P., Di Luca D., Cassai E., Barbanti-Brodano G. Protection from herpes simplex virus type 1 lethal and latent infections by secreted recombinant glycoprotein B constitutively expressed in human cells with a BK virus episomal vector. J Virol. 1990 Jan;64(1):431–436. doi: 10.1128/jvi.64.1.431-436.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Manservigi R., Gualandri R., Negrini M., Albonici L., Milanesi G., Cassai E., Barbanti-Brodano G. Constitutive expression in human cells of herpes simplex virus type 1 glycoprotein B gene cloned in an episomal eukaryotic vector. Virology. 1988 Nov;167(1):284–288. doi: 10.1016/0042-6822(88)90080-3. [DOI] [PubMed] [Google Scholar]
  33. Mirda D. P., Navarro D., Paz P., Lee P. L., Pereira L., Williams L. T. The fibroblast growth factor receptor is not required for herpes simplex virus type 1 infection. J Virol. 1992 Jan;66(1):448–457. doi: 10.1128/jvi.66.1.448-457.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Montgomery R. I., Warner M. S., Lum B. J., Spear P. G. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell. 1996 Nov 1;87(3):427–436. doi: 10.1016/s0092-8674(00)81363-x. [DOI] [PubMed] [Google Scholar]
  35. Muggeridge M. I., Cohen G. H., Eisenberg R. J. Herpes simplex virus infection can occur without involvement of the fibroblast growth factor receptor. J Virol. 1992 Feb;66(2):824–830. doi: 10.1128/jvi.66.2.824-830.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Muggeridge M. I., Wilcox W. C., Cohen G. H., Eisenberg R. J. Identification of a site on herpes simplex virus type 1 glycoprotein D that is essential for infectivity. J Virol. 1990 Aug;64(8):3617–3626. doi: 10.1128/jvi.64.8.3617-3626.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Nicola A. V., Peng C., Lou H., Cohen G. H., Eisenberg R. J. Antigenic structure of soluble herpes simplex virus (HSV) glycoprotein D correlates with inhibition of HSV infection. J Virol. 1997 Apr;71(4):2940–2946. doi: 10.1128/jvi.71.4.2940-2946.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Nicola A. V., Willis S. H., Naidoo N. N., Eisenberg R. J., Cohen G. H. Structure-function analysis of soluble forms of herpes simplex virus glycoprotein D. J Virol. 1996 Jun;70(6):3815–3822. doi: 10.1128/jvi.70.6.3815-3822.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pennica D., Lam V. T., Weber R. F., Kohr W. J., Basa L. J., Spellman M. W., Ashkenazi A., Shire S. J., Goeddel D. V. Biochemical characterization of the extracellular domain of the 75-kilodalton tumor necrosis factor receptor. Biochemistry. 1993 Mar 30;32(12):3131–3138. doi: 10.1021/bi00063a027. [DOI] [PubMed] [Google Scholar]
  40. Roller R. J., Roizman B. A herpes simplex virus 1 US11-expressing cell line is resistant to herpes simplex virus infection at a step in viral entry mediated by glycoprotein D. J Virol. 1994 May;68(5):2830–2839. doi: 10.1128/jvi.68.5.2830-2839.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rux A. H., Moore W. T., Lambris J. D., Abrams W. R., Peng C., Friedman H. M., Cohen G. H., Eisenberg R. J. Disulfide bond structure determination and biochemical analysis of glycoprotein C from herpes simplex virus. J Virol. 1996 Aug;70(8):5455–5465. doi: 10.1128/jvi.70.8.5455-5465.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shieh M. T., Spear P. G. Fibroblast growth factor receptor: does it have a role in the binding of herpes simplex virus? Science. 1991 Jul 12;253(5016):208–210. doi: 10.1126/science.1649495. [DOI] [PubMed] [Google Scholar]
  43. Showalter S. D., Zweig M., Hampar B. Monoclonal antibodies to herpes simplex virus type 1 proteins, including the immediate-early protein ICP 4. Infect Immun. 1981 Dec;34(3):684–692. doi: 10.1128/iai.34.3.684-692.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sisk W. P., Bradley J. D., Leipold R. J., Stoltzfus A. M., Ponce de Leon M., Hilf M., Peng C., Cohen G. H., Eisenberg R. J. High-level expression and purification of secreted forms of herpes simplex virus type 1 glycoprotein gD synthesized by baculovirus-infected insect cells. J Virol. 1994 Feb;68(2):766–775. doi: 10.1128/jvi.68.2.766-775.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Smith C. A., Farrah T., Goodwin R. G. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell. 1994 Mar 25;76(6):959–962. doi: 10.1016/0092-8674(94)90372-7. [DOI] [PubMed] [Google Scholar]
  46. Sodora D. L., Cohen G. H., Muggeridge M. I., Eisenberg R. J. Absence of asparagine-linked oligosaccharides from glycoprotein D of herpes simplex virus type 1 results in a structurally altered but biologically active protein. J Virol. 1991 Aug;65(8):4424–4431. doi: 10.1128/jvi.65.8.4424-4431.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sodora D. L., Eisenberg R. J., Cohen G. H. Characterization of a recombinant herpes simplex virus which expresses a glycoprotein D lacking asparagine-linked oligosaccharides. J Virol. 1991 Aug;65(8):4432–4441. doi: 10.1128/jvi.65.8.4432-4441.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tal-Singer R., Eisenberg R. J., Valyi-Nagy T., Fraser N. W., Cohen G. H. N-linked oligosaccharides on herpes simplex virus glycoprotein gD are not essential for establishment of viral latency or reactivation in the mouse eye model. Virology. 1994 Aug 1;202(2):1050–1053. doi: 10.1006/viro.1994.1437. [DOI] [PubMed] [Google Scholar]
  49. Tal-Singer R., Peng C., Ponce De Leon M., Abrams W. R., Banfield B. W., Tufaro F., Cohen G. H., Eisenberg R. J. Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules. J Virol. 1995 Jul;69(7):4471–4483. doi: 10.1128/jvi.69.7.4471-4483.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tessier D. C., Thomas D. Y., Khouri H. E., Laliberté F., Vernet T. Enhanced secretion from insect cells of a foreign protein fused to the honeybee melittin signal peptide. Gene. 1991 Feb 15;98(2):177–183. doi: 10.1016/0378-1119(91)90171-7. [DOI] [PubMed] [Google Scholar]
  51. Wells J. A. Binding in the growth hormone receptor complex. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):1–6. doi: 10.1073/pnas.93.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wells J. A. Structural and functional basis for hormone binding and receptor oligomerization. Curr Opin Cell Biol. 1994 Apr;6(2):163–173. doi: 10.1016/0955-0674(94)90132-5. [DOI] [PubMed] [Google Scholar]
  53. WuDunn D., Spear P. G. Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J Virol. 1989 Jan;63(1):52–58. doi: 10.1128/jvi.63.1.52-58.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES