Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Aug;71(8):6144–6154. doi: 10.1128/jvi.71.8.6144-6154.1997

Artificial mutations and natural variations in the CD46 molecules from human and monkey cells define regions important for measles virus binding.

E C Hsu 1, R E Dörig 1, F Sarangi 1, A Marcil 1, C Iorio 1, C D Richardson 1
PMCID: PMC191875  PMID: 9223509

Abstract

CD46 was previously shown to be a primate-specific receptor for the Edmonston strain of measles virus. This receptor consists of four short consensus regions (SCR1 to SCR4) which normally function in complement regulation. Measles virus has recently been shown to interact with SCR1 and SCR2. In this study, receptors on different types of monkey erythrocytes were employed as "natural mutant proteins" to further define the virus binding regions of CD46. Erythrocytes from African green monkeys and rhesus macaques hemagglutinate in the presence of measles virus, while baboon erythrocytes were the least efficient of the Old World monkey cells used in these assays. Subsequent studies demonstrated that the SCR2 domain of baboon CD46 contained an Arg-to-Gln mutation at amino acid position 103 which accounted for reduced hemagglutination activity. Surprisingly, none of the New World monkey erythrocytes hemagglutinated in the presence of virus. Sequencing of cDNAs derived from the lymphocytes of these New World monkeys and analysis of their erythrocytes with SCR1-specific polyclonal antibodies indicated that the SCR1 domain was deleted in these cells. Additional experiments, which used 35 different site-specific mutations inserted into CD46, were performed to complement the preceding studies. The effects of these artificial mutations were documented with a convenient binding assay using insect cells expressing the measles virus hemagglutinin. Mutations which mimicked the change found in baboon CD46 or another which deleted the SCR2 glycosylation site reduced binding substantially. Another mutation which altered GluArg to AlaAla at positions 58 and 59, totally abolished binding. Finally, the epitopes for two monoclonal antibodies which inhibit measles virus attachment were mapped to the same regions implicated by mutagenesis.

Full Text

The Full Text of this article is available as a PDF (661.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams E. M., Brown M. C., Nunge M., Krych M., Atkinson J. P. Contribution of the repeating domains of membrane cofactor protein (CD46) of the complement system to ligand binding and cofactor activity. J Immunol. 1991 Nov 1;147(9):3005–3011. [PubMed] [Google Scholar]
  2. Albrecht P., Lorenz D., Klutch M. J. Encephalitogenicity of measles virus in marmosets. Infect Immun. 1981 Nov;34(2):581–587. doi: 10.1128/iai.34.2.581-587.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Albrecht P., Lorenz D., Klutch M. J., Vickers J. H., Ennis F. A. Fatal measles infection in marmosets pathogenesis and prophylaxis. Infect Immun. 1980 Mar;27(3):969–978. doi: 10.1128/iai.27.3.969-978.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alkhatib G., Briedis D. J. The predicted primary structure of the measles virus hemagglutinin. Virology. 1986 Apr 30;150(2):479–490. doi: 10.1016/0042-6822(86)90312-0. [DOI] [PubMed] [Google Scholar]
  5. Arthos J., Deen K. C., Chaikin M. A., Fornwald J. A., Sathe G., Sattentau Q. J., Clapham P. R., Weiss R. A., McDougal J. S., Pietropaolo C. Identification of the residues in human CD4 critical for the binding of HIV. Cell. 1989 May 5;57(3):469–481. doi: 10.1016/0092-8674(89)90922-7. [DOI] [PubMed] [Google Scholar]
  6. Ashkenazi A., Presta L. G., Marsters S. A., Camerato T. R., Rosenthal K. A., Fendly B. M., Capon D. J. Mapping the CD4 binding site for human immunodeficiency virus by alanine-scanning mutagenesis. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7150–7154. doi: 10.1073/pnas.87.18.7150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Barlow P. N., Steinkasserer A., Norman D. G., Kieffer B., Wiles A. P., Sim R. B., Campbell I. D. Solution structure of a pair of complement modules by nuclear magnetic resonance. J Mol Biol. 1993 Jul 5;232(1):268–284. doi: 10.1006/jmbi.1993.1381. [DOI] [PubMed] [Google Scholar]
  8. Bartz R., Brinckmann U., Dunster L. M., Rima B., Ter Meulen V., Schneider-Schaulies J. Mapping amino acids of the measles virus hemagglutinin responsible for receptor (CD46) downregulation. Virology. 1996 Oct 1;224(1):334–337. doi: 10.1006/viro.1996.0538. [DOI] [PubMed] [Google Scholar]
  9. Bowman M. R., MacFerrin K. D., Schreiber S. L., Burakoff S. J. Identification and structural analysis of residues in the V1 region of CD4 involved in interaction with human immunodeficiency virus envelope glycoprotein gp120 and class II major histocompatibility complex molecules. Proc Natl Acad Sci U S A. 1990 Nov;87(22):9052–9056. doi: 10.1073/pnas.87.22.9052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brodsky M. H., Warton M., Myers R. M., Littman D. R. Analysis of the site in CD4 that binds to the HIV envelope glycoprotein. J Immunol. 1990 Apr 15;144(8):3078–3086. [PubMed] [Google Scholar]
  11. Buchholz C. J., Schneider U., Devaux P., Gerlier D., Cattaneo R. Cell entry by measles virus: long hybrid receptors uncouple binding from membrane fusion. J Virol. 1996 Jun;70(6):3716–3723. doi: 10.1128/jvi.70.6.3716-3723.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cho S. W., Oglesby T. J., Hsi B. L., Adams E. M., Atkinson J. P. Characterization of three monoclonal antibodies to membrane co-factor protein (MCP) of the complement system and quantification of MCP by radioassay. Clin Exp Immunol. 1991 Feb;83(2):257–261. doi: 10.1111/j.1365-2249.1991.tb05624.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Clayton L. K., Hussey R. E., Steinbrich R., Ramachandran H., Husain Y., Reinherz E. L. Substitution of murine for human CD4 residues identifies amino acids critical for HIV-gp120 binding. Nature. 1988 Sep 22;335(6188):363–366. doi: 10.1038/335363a0. [DOI] [PubMed] [Google Scholar]
  14. Devaux P., Loveland B., Christiansen D., Milland J., Gerlier D. Interactions between the ectodomains of haemagglutinin and CD46 as a primary step in measles virus entry. J Gen Virol. 1996 Jul;77(Pt 7):1477–1481. doi: 10.1099/0022-1317-77-7-1477. [DOI] [PubMed] [Google Scholar]
  15. Dörig R. E., Marcil A., Chopra A., Richardson C. D. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell. 1993 Oct 22;75(2):295–305. doi: 10.1016/0092-8674(93)80071-l. [DOI] [PubMed] [Google Scholar]
  16. Dörig R. E., Marcil A., Richardson C. D. CD46, a primate-specific receptor for measles virus. Trends Microbiol. 1994 Sep;2(9):312–318. doi: 10.1016/0966-842x(94)90447-2. [DOI] [PubMed] [Google Scholar]
  17. ENDERS-RUCKLE G. METHODS OF DETERMINING IMMUNITY, DURATION AND CHARACTER OF IMMUNITY RESULTING FROM MEASLES. Arch Gesamte Virusforsch. 1965;16:182–207. doi: 10.1007/BF01253808. [DOI] [PubMed] [Google Scholar]
  18. FUNAHASHI S., KITAWAKI T. STUDIES ON MEASLES VIRUS HEMAGGLUTINATION. Biken J. 1963 Jul;6:73–96. [PubMed] [Google Scholar]
  19. Gerlier D., Loveland B., Varior-Krishnan G., Thorley B., McKenzie I. F., Rabourdin-Combe C. Measles virus receptor properties are shared by several CD46 isoforms differing in extracellular regions and cytoplasmic tails. J Gen Virol. 1994 Sep;75(Pt 9):2163–2171. doi: 10.1099/0022-1317-75-9-2163. [DOI] [PubMed] [Google Scholar]
  20. Gerlier D., Varior-Krishnan G., Devaux P. CD46-mediated measles virus entry: a first key to host-range specificity. Trends Microbiol. 1995 Sep;3(9):338–345. doi: 10.1016/s0966-842x(00)88972-6. [DOI] [PubMed] [Google Scholar]
  21. Gould E. A., Cosby S. L., Shirodaria P. V. Salt-dependent haemagglutinating measles virus in S.S.P.E. J Gen Virol. 1976 Oct;33(1):139–142. doi: 10.1099/0022-1317-33-1-139. [DOI] [PubMed] [Google Scholar]
  22. Graves M. C., Silver S. M., Choppin P. W. Measles virus polypeptides synthesis in infected cells. Virology. 1978 May 1;86(1):254–263. doi: 10.1016/0042-6822(78)90025-9. [DOI] [PubMed] [Google Scholar]
  23. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  24. Hirano A., Yant S., Iwata K., Korte-Sarfaty J., Seya T., Nagasawa S., Wong T. C. Human cell receptor CD46 is down regulated through recognition of a membrane-proximal region of the cytoplasmic domain in persistent measles virus infection. J Virol. 1996 Oct;70(10):6929–6936. doi: 10.1128/jvi.70.10.6929-6936.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Iwata K., Seya T., Yanagi Y., Pesando J. M., Johnson P. M., Okabe M., Ueda S., Ariga H., Nagasawa S. Diversity of sites for measles virus binding and for inactivation of complement C3b and C4b on membrane cofactor protein CD46. J Biol Chem. 1995 Jun 23;270(25):15148–15152. doi: 10.1074/jbc.270.25.15148. [DOI] [PubMed] [Google Scholar]
  26. Jameson B. A., Rao P. E., Kong L. I., Hahn B. H., Shaw G. M., Hood L. E., Kent S. B. Location and chemical synthesis of a binding site for HIV-1 on the CD4 protein. Science. 1988 Jun 3;240(4857):1335–1339. doi: 10.1126/science.2453925. [DOI] [PubMed] [Google Scholar]
  27. Karp C. L., Wysocka M., Wahl L. M., Ahearn J. M., Cuomo P. J., Sherry B., Trinchieri G., Griffin D. E. Mechanism of suppression of cell-mediated immunity by measles virus. Science. 1996 Jul 12;273(5272):228–231. doi: 10.1126/science.273.5272.228. [DOI] [PubMed] [Google Scholar]
  28. Kobune F., Sakata H., Sugiura A. Marmoset lymphoblastoid cells as a sensitive host for isolation of measles virus. J Virol. 1990 Feb;64(2):700–705. doi: 10.1128/jvi.64.2.700-705.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kobune F., Takahashi H., Terao K., Ohkawa T., Ami Y., Suzaki Y., Nagata N., Sakata H., Yamanouchi K., Kai C. Nonhuman primate models of measles. Lab Anim Sci. 1996 Jun;46(3):315–320. [PubMed] [Google Scholar]
  30. Krantic S., Gimenez C., Rabourdin-Combe C. Cell-to-cell contact via measles virus haemagglutinin-CD46 interaction triggers CD46 downregulation. J Gen Virol. 1995 Nov;76(Pt 11):2793–2800. doi: 10.1099/0022-1317-76-11-2793. [DOI] [PubMed] [Google Scholar]
  31. Lalumière M., Richardson C. D. Production of recombinant baculoviruses using rapid screening vectors that contain the gene for beta-galactosidase. Methods Mol Biol. 1995;39:161–177. doi: 10.1385/0-89603-272-8:161. [DOI] [PubMed] [Google Scholar]
  32. Lebon P., Protat A., Moline P. L-arginine elution of measles virus adsorbed on monkey erythrocytes. Infect Immun. 1975 Jun;11(6):1407–1408. doi: 10.1128/iai.11.6.1407-1408.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lifson J. D., Hwang K. M., Nara P. L., Fraser B., Padgett M., Dunlop N. M., Eiden L. E. Synthetic CD4 peptide derivatives that inhibit HIV infection and cytopathicity. Science. 1988 Aug 5;241(4866):712–716. doi: 10.1126/science.2969619. [DOI] [PubMed] [Google Scholar]
  34. Liszewski M. K., Atkinson J. P. Membrane cofactor protein. Curr Top Microbiol Immunol. 1992;178:45–60. doi: 10.1007/978-3-642-77014-2_4. [DOI] [PubMed] [Google Scholar]
  35. Liszewski M. K., Post T. W., Atkinson J. P. Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. Annu Rev Immunol. 1991;9:431–455. doi: 10.1146/annurev.iy.09.040191.002243. [DOI] [PubMed] [Google Scholar]
  36. Maisner A., Alvarez J., Liszewski M. K., Atkinson D. J., Atkinson J. P., Herrler G. The N-glycan of the SCR 2 region is essential for membrane cofactor protein (CD46) to function as a measles virus receptor. J Virol. 1996 Aug;70(8):4973–4977. doi: 10.1128/jvi.70.8.4973-4977.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Maisner A., Herrler G. Membrane cofactor protein with different types of N-glycans can serve as measles virus receptor. Virology. 1995 Jul 10;210(2):479–481. doi: 10.1006/viro.1995.1365. [DOI] [PubMed] [Google Scholar]
  38. Maisner A., Schneider-Schaulies J., Liszewski M. K., Atkinson J. P., Herrler G. Binding of measles virus to membrane cofactor protein (CD46): importance of disulfide bonds and N-glycans for the receptor function. J Virol. 1994 Oct;68(10):6299–6304. doi: 10.1128/jvi.68.10.6299-6304.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Malvoisin E., Wild T. F. Measles virus glycoproteins: studies on the structure and interaction of the haemagglutinin and fusion proteins. J Gen Virol. 1993 Nov;74(Pt 11):2365–2372. doi: 10.1099/0022-1317-74-11-2365. [DOI] [PubMed] [Google Scholar]
  40. Manchester M., Liszewski M. K., Atkinson J. P., Oldstone M. B. Multiple isoforms of CD46 (membrane cofactor protein) serve as receptors for measles virus. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2161–2165. doi: 10.1073/pnas.91.6.2161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Manchester M., Valsamakis A., Kaufman R., Liszewski M. K., Alvarez J., Atkinson J. P., Lublin D. M., Oldstone M. B. Measles virus and C3 binding sites are distinct on membrane cofactor protein (CD46). Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2303–2307. doi: 10.1073/pnas.92.6.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Mizukami T., Fuerst T. R., Berger E. A., Moss B. Binding region for human immunodeficiency virus (HIV) and epitopes for HIV-blocking monoclonal antibodies of the CD4 molecule defined by site-directed mutagenesis. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9273–9277. doi: 10.1073/pnas.85.23.9273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. NORRBY E. Hemagglutination by measles virus. I. The production of hemagglutinin in tissue culture and the influence of different conditions on the hemagglutinating system. Arch Gesamte Virusforsch. 1962;12:153–163. doi: 10.1007/BF01258126. [DOI] [PubMed] [Google Scholar]
  44. NORRBY E. Hemagglutination by measles virus. II. Properties of the hemagglutinin and of the receptors on the erythrocytes. Arch Gesamte Virusforsch. 1962;12:164–172. doi: 10.1007/BF01258127. [DOI] [PubMed] [Google Scholar]
  45. NORRBY E. Hemagglutination by measles virus. III. Identification of two different hemagglutinins. Virology. 1963 Feb;19:147–157. doi: 10.1016/0042-6822(63)90004-7. [DOI] [PubMed] [Google Scholar]
  46. Naniche D., Varior-Krishnan G., Cervoni F., Wild T. F., Rossi B., Rabourdin-Combe C., Gerlier D. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol. 1993 Oct;67(10):6025–6032. doi: 10.1128/jvi.67.10.6025-6032.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Naniche D., Wild T. F., Rabourdin-Combe C., Gerlier D. Measles virus haemagglutinin induces down-regulation of gp57/67, a molecule involved in virus binding. J Gen Virol. 1993 Jun;74(Pt 6):1073–1079. doi: 10.1099/0022-1317-74-6-1073. [DOI] [PubMed] [Google Scholar]
  48. Nickells M. W., Atkinson J. P. Characterization of CR1- and membrane cofactor protein-like proteins of two primates. J Immunol. 1990 Jun 1;144(11):4262–4268. [PubMed] [Google Scholar]
  49. PERIES J. R., CHANY C. Studies on measles viral hemagglutination. Proc Soc Exp Biol Med. 1962 Jul;110:477–482. doi: 10.3181/00379727-110-27555. [DOI] [PubMed] [Google Scholar]
  50. PERIES J. R., CHANY C. [Hemagglutinating and hemolytic activity of the measles virus]. C R Hebd Seances Acad Sci. 1960 Aug 1;251:820–821. [PubMed] [Google Scholar]
  51. PERIES J. R., CHANY C. [Mechanism of the hemagglutinating action of cultures of measles virus]. C R Hebd Seances Acad Sci. 1961 May 8;252:2956–2957. [PubMed] [Google Scholar]
  52. Peterson A., Seed B. Genetic analysis of monoclonal antibody and HIV binding sites on the human lymphocyte antigen CD4. Cell. 1988 Jul 1;54(1):65–72. doi: 10.1016/0092-8674(88)90180-8. [DOI] [PubMed] [Google Scholar]
  53. Post T. W., Liszewski M. K., Adams E. M., Tedja I., Miller E. A., Atkinson J. P. Membrane cofactor protein of the complement system: alternative splicing of serine/threonine/proline-rich exons and cytoplasmic tails produces multiple isoforms that correlate with protein phenotype. J Exp Med. 1991 Jul 1;174(1):93–102. doi: 10.1084/jem.174.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Purcell D. F., Russell S. M., Deacon N. J., Brown M. A., Hooker D. J., McKenzie I. F. Alternatively spliced RNAs encode several isoforms of CD46 (MCP), a regulator of complement activation. Immunogenetics. 1991;33(5-6):335–344. doi: 10.1007/BF00216692. [DOI] [PubMed] [Google Scholar]
  55. ROSANOFF E. I. Hemagglutination and hemadsorption of measles virus. Proc Soc Exp Biol Med. 1961 Mar;106:563–567. doi: 10.3181/00379727-106-26403. [DOI] [PubMed] [Google Scholar]
  56. Radecke F., Billeter M. A. Appendix: measles virus antigenome and protein consensus sequences. Curr Top Microbiol Immunol. 1995;191:181–192. doi: 10.1007/978-3-642-78621-1_12. [DOI] [PubMed] [Google Scholar]
  57. Repke H., Gabuzda D., Palù G., Emmrich F., Sodroski J. Effects of CD4 synthetic peptides on HIV type I envelope glycoprotein function. J Immunol. 1992 Sep 1;149(5):1809–1816. [PubMed] [Google Scholar]
  58. Richardson C. D., Banville M., Lalumière M., Vialard J., Meighen E. A. Bacterial luciferase produced with rapid-screening baculovirus vectors is a sensitive reporter for infection of insect cells and larvae. Intervirology. 1992;34(4):213–227. doi: 10.1159/000150285. [DOI] [PubMed] [Google Scholar]
  59. Richardson C. D., Berkovich A., Rozenblatt S., Bellini W. J. Use of antibodies directed against synthetic peptides for identifying cDNA clones, establishing reading frames, and deducing the gene order of measles virus. J Virol. 1985 Apr;54(1):186–193. doi: 10.1128/jvi.54.1.186-193.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Richardson C. D., Scheid A., Choppin P. W. Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F1 or HA2 viral polypeptides. Virology. 1980 Aug;105(1):205–222. doi: 10.1016/0042-6822(80)90168-3. [DOI] [PubMed] [Google Scholar]
  61. Richardson C., Hull D., Greer P., Hasel K., Berkovich A., Englund G., Bellini W., Rima B., Lazzarini R. The nucleotide sequence of the mRNA encoding the fusion protein of measles virus (Edmonston strain): a comparison of fusion proteins from several different paramyxoviruses. Virology. 1986 Dec;155(2):508–523. doi: 10.1016/0042-6822(86)90212-6. [DOI] [PubMed] [Google Scholar]
  62. Rota J. S., Hummel K. B., Rota P. A., Bellini W. J. Genetic variability of the glycoprotein genes of current wild-type measles isolates. Virology. 1992 May;188(1):135–142. doi: 10.1016/0042-6822(92)90742-8. [DOI] [PubMed] [Google Scholar]
  63. Russell S. M., Sparrow R. L., McKenzie I. F., Purcell D. F. Tissue-specific and allelic expression of the complement regulator CD46 is controlled by alternative splicing. Eur J Immunol. 1992 Jun;22(6):1513–1518. doi: 10.1002/eji.1830220625. [DOI] [PubMed] [Google Scholar]
  64. Sattentau Q. J., Dalgleish A. G., Weiss R. A., Beverley P. C. Epitopes of the CD4 antigen and HIV infection. Science. 1986 Nov 28;234(4780):1120–1123. doi: 10.1126/science.2430333. [DOI] [PubMed] [Google Scholar]
  65. Schneider-Schaulies J., Dunster L. M., Kobune F., Rima B., ter Meulen V. Differential downregulation of CD46 by measles virus strains. J Virol. 1995 Nov;69(11):7257–7259. doi: 10.1128/jvi.69.11.7257-7259.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Schneider-Schaulies J., Schnorr J. J., Brinckmann U., Dunster L. M., Baczko K., Liebert U. G., Schneider-Schaulies S., ter Meulen V. Receptor usage and differential downregulation of CD46 by measles virus wild-type and vaccine strains. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3943–3947. doi: 10.1073/pnas.92.9.3943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Schneider-Schaulies J., Schnorr J. J., Schlender J., Dunster L. M., Schneider-Schaulies S., ter Meulen V. Receptor (CD46) modulation and complement-mediated lysis of uninfected cells after contact with measles virus-infected cells. J Virol. 1996 Jan;70(1):255–263. doi: 10.1128/jvi.70.1.255-263.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Shirodaria P. V., Dermott E., Gould E. A. Some characteristics of salt-dependent haemagglutinating measles viruses. J Gen Virol. 1976 Oct;33(1):107–115. doi: 10.1099/0022-1317-33-1-107. [DOI] [PubMed] [Google Scholar]
  69. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Tsui P., Sweet R. W., Sathe G., Rosenberg M. An efficient phage plaque screen for the random mutational analysis of the interaction of HIV-1 gp120 with human CD4. J Biol Chem. 1992 May 5;267(13):9361–9367. [PubMed] [Google Scholar]
  71. Vialard J. E., Richardson C. D. The 1,629-nucleotide open reading frame located downstream of the Autographa californica nuclear polyhedrosis virus polyhedrin gene encodes a nucleocapsid-associated phosphoprotein. J Virol. 1993 Oct;67(10):5859–5866. doi: 10.1128/jvi.67.10.5859-5866.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Vialard J., Lalumière M., Vernet T., Briedis D., Alkhatib G., Henning D., Levin D., Richardson C. Synthesis of the membrane fusion and hemagglutinin proteins of measles virus, using a novel baculovirus vector containing the beta-galactosidase gene. J Virol. 1990 Jan;64(1):37–50. doi: 10.1128/jvi.64.1.37-50.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Wild T. F., Malvoisin E., Buckland R. Measles virus: both the haemagglutinin and fusion glycoproteins are required for fusion. J Gen Virol. 1991 Feb;72(Pt 2):439–442. doi: 10.1099/0022-1317-72-2-439. [DOI] [PubMed] [Google Scholar]
  74. Zhang X., Gaubin M., Briant L., Srikantan V., Murali R., Saragovi U., Weiner D., Devaux C., Autiero M., Piatier-Tonneau D. Synthetic CD4 exocyclics inhibit binding of human immunodeficiency virus type 1 envelope to CD4 and virus replication in T lymphocytes. Nat Biotechnol. 1997 Feb;15(2):150–154. doi: 10.1038/nbt0297-150. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES