Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Aug;71(8):6183–6190. doi: 10.1128/jvi.71.8.6183-6190.1997

Generation of coronavirus spike deletion variants by high-frequency recombination at regions of predicted RNA secondary structure.

C L Rowe 1, J O Fleming 1, M J Nathan 1, J Y Sgro 1, A C Palmenberg 1, S C Baker 1
PMCID: PMC191880  PMID: 9223514

Abstract

Coronavirus RNA evolves in the central nervous systems (CNS) of mice during persistent infection. This evolution can be monitored by detection of a viral quasispecies of spike deletion variants (SDVs) (C. L. Rowe, S. C. Baker, M. J. Nathan, and J. O. Fleming, J. Virol. 71:2959-2969, 1997). We and others have found that the deletions cluster in the region from 1,200 to 1,800 nucleotides from the 5' end of the spike gene sequence, termed the "hypervariable" region. To address how SDVs might arise, we generated the predicted folding structures of the positive- and negative-strand senses of the entire 4,139-nt spike RNA sequence. We found that a prominent, isolated stem-loop structure is coincident with the hypervariable region in each structure. To determine if this predicted stem-loop is a "hot spot" for RNA recombination, we assessed whether this region of the spike is more frequently deleted than three other selected regions of the spike sequence in a population of viral sequences isolated from the CNS of acutely and persistently infected mice. Using differential colony hybridization of cloned spike reverse transcription-PCR products, we detected SDVs in which the hot spot was deleted but did not detect SDVs in which other regions of the spike sequence were exclusively deleted. Furthermore, sequence analysis and mapping of the crossover sites of 25 distinct patterns of SDVs showed that the majority of crossover sites clustered to two regions at the base of the isolated stem-loop, which we designated as high-frequency recombination sites 1 and 2. Interestingly, the majority of the left and right crossover sites of the SDVs were directly across from or proximal to one another, suggesting that these SDVs are likely generated by intramolecular recombination. Overall, our results are consistent with there being an important role for the spike RNA secondary structure as a contributing factor in the generation of SDVs during persistent infection.

Full Text

The Full Text of this article is available as a PDF (663.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adami C., Pooley J., Glomb J., Stecker E., Fazal F., Fleming J. O., Baker S. C. Evolution of mouse hepatitis virus (MHV) during chronic infection: quasispecies nature of the persisting MHV RNA. Virology. 1995 Jun 1;209(2):337–346. doi: 10.1006/viro.1995.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baczko K., Lampe J., Liebert U. G., Brinckmann U., ter Meulen V., Pardowitz I., Budka H., Cosby S. L., Isserte S., Rima B. K. Clonal expansion of hypermutated measles virus in a SSPE brain. Virology. 1993 Nov;197(1):188–195. doi: 10.1006/viro.1993.1579. [DOI] [PubMed] [Google Scholar]
  3. Banner L. R., Keck J. G., Lai M. M. A clustering of RNA recombination sites adjacent to a hypervariable region of the peplomer gene of murine coronavirus. Virology. 1990 Apr;175(2):548–555. doi: 10.1016/0042-6822(90)90439-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Banner L. R., Lai M. M. Random nature of coronavirus RNA recombination in the absence of selection pressure. Virology. 1991 Nov;185(1):441–445. doi: 10.1016/0042-6822(91)90795-D. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baric R. S., Schaad M. C., Wei T., Fu K. S., Lum K., Shieh C., Stohlman S. A. Murine coronavirus temperature sensitive mutants. Adv Exp Med Biol. 1990;276:349–356. doi: 10.1007/978-1-4684-5823-7_47. [DOI] [PubMed] [Google Scholar]
  6. Bergmann C. C., Yao Q., Lin M., Stohlman S. A. The JHM strain of mouse hepatitis virus induces a spike protein-specific Db-restricted cytotoxic T cell response. J Gen Virol. 1996 Feb;77(Pt 2):315–325. doi: 10.1099/0022-1317-77-2-315. [DOI] [PubMed] [Google Scholar]
  7. Bruccoleri R. E., Heinrich G. An improved algorithm for nucleic acid secondary structure display. Comput Appl Biosci. 1988 Mar;4(1):167–173. doi: 10.1093/bioinformatics/4.1.167. [DOI] [PubMed] [Google Scholar]
  8. Cascone P. J., Haydar T. F., Simon A. E. Sequences and structures required for recombination between virus-associated RNAs. Science. 1993 May 7;260(5109):801–805. doi: 10.1126/science.8484119. [DOI] [PubMed] [Google Scholar]
  9. Castro R. F., Perlman S. CD8+ T-cell epitopes within the surface glycoprotein of a neurotropic coronavirus and correlation with pathogenicity. J Virol. 1995 Dec;69(12):8127–8131. doi: 10.1128/jvi.69.12.8127-8131.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cavanagh D. Coronavirus IBV: structural characterization of the spike protein. J Gen Virol. 1983 Dec;64(Pt 12):2577–2583. doi: 10.1099/0022-1317-64-12-2577. [DOI] [PubMed] [Google Scholar]
  11. Chen D. S., Asanaka M., Yokomori K., Wang F., Hwang S. B., Li H. P., Lai M. M. A pregnancy-specific glycoprotein is expressed in the brain and serves as a receptor for mouse hepatitis virus. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12095–12099. doi: 10.1073/pnas.92.26.12095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Collins A. R., Knobler R. L., Powell H., Buchmeier M. J. Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell--cell fusion. Virology. 1982 Jun;119(2):358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dalziel R. G., Lampert P. W., Talbot P. J., Buchmeier M. J. Site-specific alteration of murine hepatitis virus type 4 peplomer glycoprotein E2 results in reduced neurovirulence. J Virol. 1986 Aug;59(2):463–471. doi: 10.1128/jvi.59.2.463-471.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Domingo E., Escarmís C., Sevilla N., Moya A., Elena S. F., Quer J., Novella I. S., Holland J. J. Basic concepts in RNA virus evolution. FASEB J. 1996 Jun;10(8):859–864. doi: 10.1096/fasebj.10.8.8666162. [DOI] [PubMed] [Google Scholar]
  15. Duarte E. A., Novella I. S., Weaver S. C., Domingo E., Wain-Hobson S., Clarke D. K., Moya A., Elena S. F., de la Torre J. C., Holland J. J. RNA virus quasispecies: significance for viral disease and epidemiology. Infect Agents Dis. 1994 Aug;3(4):201–214. [PubMed] [Google Scholar]
  16. Fazakerley J. K., Parker S. E., Bloom F., Buchmeier M. J. The V5A13.1 envelope glycoprotein deletion mutant of mouse hepatitis virus type-4 is neuroattenuated by its reduced rate of spread in the central nervous system. Virology. 1992 Mar;187(1):178–188. doi: 10.1016/0042-6822(92)90306-A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fleming J. O., Trousdale M. D., el-Zaatari F. A., Stohlman S. A., Weiner L. P. Pathogenicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies. J Virol. 1986 Jun;58(3):869–875. doi: 10.1128/jvi.58.3.869-875.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fu K., Baric R. S. Evidence for variable rates of recombination in the MHV genome. Virology. 1992 Jul;189(1):88–102. doi: 10.1016/0042-6822(92)90684-H. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gallagher T. M., Parker S. E., Buchmeier M. J. Neutralization-resistant variants of a neurotropic coronavirus are generated by deletions within the amino-terminal half of the spike glycoprotein. J Virol. 1990 Feb;64(2):731–741. doi: 10.1128/jvi.64.2.731-741.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jaeger J. A., Turner D. H., Zuker M. Improved predictions of secondary structures for RNA. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7706–7710. doi: 10.1073/pnas.86.20.7706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Keck J. G., Hogue B. G., Brian D. A., Lai M. M. Temporal regulation of bovine coronavirus RNA synthesis. Virus Res. 1988 Mar;9(4):343–356. doi: 10.1016/0168-1702(88)90093-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Keck J. G., Matsushima G. K., Makino S., Fleming J. O., Vannier D. M., Stohlman S. A., Lai M. M. In vivo RNA-RNA recombination of coronavirus in mouse brain. J Virol. 1988 May;62(5):1810–1813. doi: 10.1128/jvi.62.5.1810-1813.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Keck J. G., Stohlman S. A., Soe L. H., Makino S., Lai M. M. Multiple recombination sites at the 5'-end of murine coronavirus RNA. Virology. 1987 Feb;156(2):331–341. doi: 10.1016/0042-6822(87)90413-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kirkegaard K., Baltimore D. The mechanism of RNA recombination in poliovirus. Cell. 1986 Nov 7;47(3):433–443. doi: 10.1016/0092-8674(86)90600-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lai M. M., Baric R. S., Makino S., Keck J. G., Egbert J., Leibowitz J. L., Stohlman S. A. Recombination between nonsegmented RNA genomes of murine coronaviruses. J Virol. 1985 Nov;56(2):449–456. doi: 10.1128/jvi.56.2.449-456.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lai M. M., Liao C. L., Lin Y. J., Zhang X. Coronavirus: how a large RNA viral genome is replicated and transcribed. Infect Agents Dis. 1994 Apr-Jun;3(2-3):98–105. [PubMed] [Google Scholar]
  27. Lai M. M. RNA recombination in animal and plant viruses. Microbiol Rev. 1992 Mar;56(1):61–79. doi: 10.1128/mr.56.1.61-79.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Li Y., Ball L. A. Nonhomologous RNA recombination during negative-strand synthesis of flock house virus RNA. J Virol. 1993 Jul;67(7):3854–3860. doi: 10.1128/jvi.67.7.3854-3860.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Liao C. L., Lai M. M. RNA recombination in a coronavirus: recombination between viral genomic RNA and transfected RNA fragments. J Virol. 1992 Oct;66(10):6117–6124. doi: 10.1128/jvi.66.10.6117-6124.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Luytjes W., Bredenbeek P. J., Noten A. F., Horzinek M. C., Spaan W. J. Sequence of mouse hepatitis virus A59 mRNA 2: indications for RNA recombination between coronaviruses and influenza C virus. Virology. 1988 Oct;166(2):415–422. doi: 10.1016/0042-6822(88)90512-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Makino S., Keck J. G., Stohlman S. A., Lai M. M. High-frequency RNA recombination of murine coronaviruses. J Virol. 1986 Mar;57(3):729–737. doi: 10.1128/jvi.57.3.729-737.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Martell M., Esteban J. I., Quer J., Genescà J., Weiner A., Esteban R., Guardia J., Gómez J. Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution. J Virol. 1992 May;66(5):3225–3229. doi: 10.1128/jvi.66.5.3225-3229.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nagy P. D., Dzianott A., Ahlquist P., Bujarski J. J. Mutations in the helicase-like domain of protein 1a alter the sites of RNA-RNA recombination in brome mosaic virus. J Virol. 1995 Apr;69(4):2547–2556. doi: 10.1128/jvi.69.4.2547-2556.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Novella I. S., Domingo E., Holland J. J. Rapid viral quasispecies evolution: implications for vaccine and drug strategies. Mol Med Today. 1995 Aug;1(5):248–253. doi: 10.1016/S1357-4310(95)91551-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nowak M. A., May R. M., Phillips R. E., Rowland-Jones S., Lalloo D. G., McAdam S., Klenerman P., Köppe B., Sigmund K., Bangham C. R. Antigenic oscillations and shifting immunodominance in HIV-1 infections. Nature. 1995 Jun 15;375(6532):606–611. doi: 10.1038/375606a0. [DOI] [PubMed] [Google Scholar]
  36. Parker S. E., Gallagher T. M., Buchmeier M. J. Sequence analysis reveals extensive polymorphism and evidence of deletions within the E2 glycoprotein gene of several strains of murine hepatitis virus. Virology. 1989 Dec;173(2):664–673. doi: 10.1016/0042-6822(89)90579-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pewe L., Wu G. F., Barnett E. M., Castro R. F., Perlman S. Cytotoxic T cell-resistant variants are selected in a virus-induced demyelinating disease. Immunity. 1996 Sep;5(3):253–262. doi: 10.1016/s1074-7613(00)80320-9. [DOI] [PubMed] [Google Scholar]
  38. Pogany J., Romero J., Huang Q., Sgro J. Y., Shang H., Bujarski J. J. De novo generation of defective interfering-like RNAs in broad bean mottle bromovirus. Virology. 1995 Oct 1;212(2):574–586. doi: 10.1006/viro.1995.1515. [DOI] [PubMed] [Google Scholar]
  39. Romanova L. I., Blinov V. M., Tolskaya E. A., Viktorova E. G., Kolesnikova M. S., Guseva E. A., Agol V. I. The primary structure of crossover regions of intertypic poliovirus recombinants: a model of recombination between RNA genomes. Virology. 1986 Nov;155(1):202–213. doi: 10.1016/0042-6822(86)90180-7. [DOI] [PubMed] [Google Scholar]
  40. Rowe C. L., Baker S. C., Nathan M. J., Fleming J. O. Evolution of mouse hepatitis virus: detection and characterization of spike deletion variants during persistent infection. J Virol. 1997 Apr;71(4):2959–2969. doi: 10.1128/jvi.71.4.2959-2969.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Taguchi F., Ikeda T., Shida H. Molecular cloning and expression of a spike protein of neurovirulent murine coronavirus JHMV variant cl-2. J Gen Virol. 1992 May;73(Pt 5):1065–1072. doi: 10.1099/0022-1317-73-5-1065. [DOI] [PubMed] [Google Scholar]
  42. Tolskaya E. A., Romanova L. I., Blinov V. M., Viktorova E. G., Sinyakov A. N., Kolesnikova M. S., Agol V. I. Studies on the recombination between RNA genomes of poliovirus: the primary structure and nonrandom distribution of crossover regions in the genomes of intertypic poliovirus recombinants. Virology. 1987 Nov;161(1):54–61. doi: 10.1016/0042-6822(87)90170-x. [DOI] [PubMed] [Google Scholar]
  43. Wang F. I., Fleming J. O., Lai M. M. Sequence analysis of the spike protein gene of murine coronavirus variants: study of genetic sites affecting neuropathogenicity. Virology. 1992 Feb;186(2):742–749. doi: 10.1016/0042-6822(92)90041-M. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wege H., Winter J., Meyermann R. The peplomer protein E2 of coronavirus JHM as a determinant of neurovirulence: definition of critical epitopes by variant analysis. J Gen Virol. 1988 Jan;69(Pt 1):87–98. doi: 10.1099/0022-1317-69-1-87. [DOI] [PubMed] [Google Scholar]
  45. White K. A., Morris T. J. Nonhomologous RNA recombination in tombusviruses: generation and evolution of defective interfering RNAs by stepwise deletions. J Virol. 1994 Jan;68(1):14–24. doi: 10.1128/jvi.68.1.14-24.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. White K. A., Morris T. J. RNA determinants of junction site selection in RNA virus recombinants and defective interfering RNAs. RNA. 1995 Dec;1(10):1029–1040. [PMC free article] [PubMed] [Google Scholar]
  47. Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES