Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Aug;71(8):6233–6236. doi: 10.1128/jvi.71.8.6233-6236.1997

Transcriptional strategy of closteroviruses: mapping the 5' termini of the citrus tristeza virus subgenomic RNAs.

A V Karasev 1, M E Hilf 1, S M Garnsey 1, W O Dawson 1
PMCID: PMC191890  PMID: 9223524

Abstract

Citrus tristeza virus (CTV) induces formation of a nested set of at least nine 3' coterminal subgenomic RNAs (sgRNAs) in infected tissue. The organization and expression of the 19,296-nucleotide (nt) CTV genome resembles that of coronaviruses, with polyprotein processing, translational frameshifting, and multiple sgRNA formation, but phylogenetically the CTV polymerase, like polymerases of other closteroviruses, belongs to the Sindbis virus-like lineage of RNA virus polymerases. Both positive-strand RNA virus supergroups, coronaviruses and Sindbis-like viruses, utilize different mechanisms of transcription. To address the mechanism of CTV transcription, 5' termini for the two most abundant sgRNAs, 1.5 and 0.9 kb, respectively, were mapped by runoff reverse transcription. The two sgRNAs were demonstrated to have 48- and 38-nt 5' untranslated regions (5'-UTRs), respectively. The 5'-UTR for the 1.5-kb RNA was cloned, sequenced, and demonstrated to be colinear with the 48-nt genomic sequence upstream of the initiator codon of the respective open reading frame 10, i.e., to be of continuous template origin. The data obtained suggest that the sgRNA transcription of CTV is dissimilar from the coronavirus transcription and consistent with the transcriptional mechanism of other Sindbis-like viruses. Thus, the Sindbis virus-like mechanism of transcription of the positive-strand RNA genomes might be successfully utilized by the closterovirus genome of up to 19.3 kb with multiple sgRNAs.

Full Text

The Full Text of this article is available as a PDF (718.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agranovsky A. A., Koenig R., Maiss E., Boyko V. P., Casper R., Atabekov J. G. Expression of the beet yellows closterovirus capsid protein and p24, a capsid protein homologue, in vitro and in vivo. J Gen Virol. 1994 Jun;75(Pt 6):1431–1439. doi: 10.1099/0022-1317-75-6-1431. [DOI] [PubMed] [Google Scholar]
  2. Agranovsky A. A., Koonin E. V., Boyko V. P., Maiss E., Frötschl R., Lunina N. A., Atabekov J. G. Beet yellows closterovirus: complete genome structure and identification of a leader papain-like thiol protease. Virology. 1994 Jan;198(1):311–324. doi: 10.1006/viro.1994.1034. [DOI] [PubMed] [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  4. Bar-Joseph M., Garnsey S. M., Gonsalves D. The closteroviruses: a distinct group of elongated plant viruses. Adv Virus Res. 1979;25:93–168. doi: 10.1016/s0065-3527(08)60569-2. [DOI] [PubMed] [Google Scholar]
  5. Dawson W. O. Tobamovirus-plant interactions. Virology. 1992 Feb;186(2):359–367. doi: 10.1016/0042-6822(92)90001-6. [DOI] [PubMed] [Google Scholar]
  6. Hilf M. E., Karasev A. V., Pappu H. R., Gumpf D. J., Niblett C. L., Garnsey S. M. Characterization of citrus tristeza virus subgenomic RNAs in infected tissue. Virology. 1995 Apr 20;208(2):576–582. doi: 10.1006/viro.1995.1188. [DOI] [PubMed] [Google Scholar]
  7. Karasev A. V., Boyko V. P., Gowda S., Nikolaeva O. V., Hilf M. E., Koonin E. V., Niblett C. L., Cline K., Gumpf D. J., Lee R. F. Complete sequence of the citrus tristeza virus RNA genome. Virology. 1995 Apr 20;208(2):511–520. doi: 10.1006/viro.1995.1182. [DOI] [PubMed] [Google Scholar]
  8. Karasev A. V., Nikolaeva O. V., Mushegian A. R., Lee R. F., Dawson W. O. Organization of the 3'-terminal half of beet yellow stunt virus genome and implications for the evolution of closteroviruses. Virology. 1996 Jul 1;221(1):199–207. doi: 10.1006/viro.1996.0366. [DOI] [PubMed] [Google Scholar]
  9. Klaassen V. A., Boeshore M. L., Koonin E. V., Tian T., Falk B. W. Genome structure and phylogenetic analysis of lettuce infectious yellows virus, a whitefly-transmitted, bipartite closterovirus. Virology. 1995 Apr 1;208(1):99–110. doi: 10.1006/viro.1995.1133. [DOI] [PubMed] [Google Scholar]
  10. Koonin E. V., Dolja V. V. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol. 1993;28(5):375–430. doi: 10.3109/10409239309078440. [DOI] [PubMed] [Google Scholar]
  11. Lai M. M. Coronavirus: organization, replication and expression of genome. Annu Rev Microbiol. 1990;44:303–333. doi: 10.1146/annurev.mi.44.100190.001511. [DOI] [PubMed] [Google Scholar]
  12. Levis R., Schlesinger S., Huang H. V. Promoter for Sindbis virus RNA-dependent subgenomic RNA transcription. J Virol. 1990 Apr;64(4):1726–1733. doi: 10.1128/jvi.64.4.1726-1733.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Logemann J., Schell J., Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal Biochem. 1987 May 15;163(1):16–20. doi: 10.1016/0003-2697(87)90086-8. [DOI] [PubMed] [Google Scholar]
  14. Mawassi M., Karasev A. V., Mietkiewska E., Gafny R., Lee R. F., Dawson W. O., Bar-Joseph M. Defective RNA molecules associated with citrus tristeza virus. Virology. 1995 Apr 1;208(1):383–387. doi: 10.1006/viro.1995.1165. [DOI] [PubMed] [Google Scholar]
  15. Mawassi M., Mietkiewska E., Gofman R., Yang G., Bar-Joseph M. Unusual sequence relationships between two isolates of citrus tristeza virus. J Gen Virol. 1996 Sep;77(Pt 9):2359–2364. doi: 10.1099/0022-1317-77-9-2359. [DOI] [PubMed] [Google Scholar]
  16. Mawassi M., Mietkiewska E., Hilf M. E., Ashoulin L., Karasev A. V., Gafny R., Lee R. F., Garnsey S. M., Dawson W. O., Bar-Joseph M. Multiple species of defective RNAs in plants infected with citrus tristeza virus. Virology. 1995 Dec 1;214(1):264–268. doi: 10.1006/viro.1995.9930. [DOI] [PubMed] [Google Scholar]
  17. Miller W. A., Dreher T. W., Hall T. C. Synthesis of brome mosaic virus subgenomic RNA in vitro by internal initiation on (-)-sense genomic RNA. Nature. 1985 Jan 3;313(5997):68–70. doi: 10.1038/313068a0. [DOI] [PubMed] [Google Scholar]
  18. Strauss J. H., Strauss E. G. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev. 1994 Sep;58(3):491–562. doi: 10.1128/mr.58.3.491-562.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wu G., Kaper J. M. Requirement of 3'-terminal guanosine in (-)-stranded RNA for in vitro replication of cucumber mosaic virus satellite RNA by viral RNA-dependent RNA polymerase. J Mol Biol. 1994 May 20;238(5):655–657. doi: 10.1006/jmbi.1994.1326. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES