Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Sep;71(9):6323–6331. doi: 10.1128/jvi.71.9.6323-6331.1997

The potent enhancer activity of the polycythemic strain of spleen focus-forming virus in hematopoietic cells is governed by a binding site for Sp1 in the upstream control region and by a unique enhancer core motif, creating an exclusive target for PEBP/CBF.

C Baum 1, K Itoh 1, J Meyer 1, C Laker 1, Y Ito 1, W Ostertag 1
PMCID: PMC191905  PMID: 9261349

Abstract

The polycythemic strain of the spleen focus-forming virus (SFFVp) contains the most potent murine retroviral enhancer configuration known so far for gene expression in myeloerythroid hematopoietic cells. In the present study, we mapped two crucial elements responsible for the high activity of the SFFVp enhancer to an altered upstream control region (UCR) containing a GC-rich motif (5'-GGGCGGG-3') and to a unique enhancer core (5'-TGCGGTC-3'). Acquisition of these motifs accounts for half of the activity of the complete retroviral enhancer in hematopoietic cells, irrespective of the developmental stage or lineage. Furthermore, the UCR motif contains the major determinant for the enhancer activity of SFFVp in embryonic stem (ES) cells. Using electrophoretic mobility shift assays, we show that the UCR of SFFVp, but not of Friend murine leukemia virus, is targeted by the ubiquitous transcriptional activator, Sp1. The core motif of SFFVp creates a specific and high-affinity target for polyomavirus enhancer binding protein/core binding factor (PEBP/CBF) and excludes access of CAAT/enhancer binding protein. Cotransfection experiments with ES cells imply that PEBP/CBF cooperates with the neighboring element, LVb (the only conserved Ets consensus in the SFFVp enhancer), and that the Sp1 motif in the UCR stimulates transactivation through the Ets-PEBP interaction. Putative secondary structures of the retroviral enhancers are proposed based on these data.

Full Text

The Full Text of this article is available as a PDF (924.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akgün E., Ziegler M., Grez M. Determinants of retrovirus gene expression in embryonal carcinoma cells. J Virol. 1991 Jan;65(1):382–388. doi: 10.1128/jvi.65.1.382-388.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andrews N. C., Faller D. V. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 1991 May 11;19(9):2499–2499. doi: 10.1093/nar/19.9.2499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bae S. C., Ogawa E., Maruyama M., Oka H., Satake M., Shigesada K., Jenkins N. A., Gilbert D. J., Copeland N. G., Ito Y. PEBP2 alpha B/mouse AML1 consists of multiple isoforms that possess differential transactivation potentials. Mol Cell Biol. 1994 May;14(5):3242–3252. doi: 10.1128/mcb.14.5.3242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bae S. C., Takahashi E., Zhang Y. W., Ogawa E., Shigesada K., Namba Y., Satake M., Ito Y. Cloning, mapping and expression of PEBP2 alpha C, a third gene encoding the mammalian Runt domain. Gene. 1995 Jul 4;159(2):245–248. doi: 10.1016/0378-1119(95)00060-j. [DOI] [PubMed] [Google Scholar]
  5. Bae S. C., Yamaguchi-Iwai Y., Ogawa E., Maruyama M., Inuzuka M., Kagoshima H., Shigesada K., Satake M., Ito Y. Isolation of PEBP2 alpha B cDNA representing the mouse homolog of human acute myeloid leukemia gene, AML1. Oncogene. 1993 Mar;8(3):809–814. [PubMed] [Google Scholar]
  6. Baum C., Eckert H. G., Stocking C., Ostertag W. Activity of Friend mink cell focus-forming retrovirus during myelo-erythroid hematopoiesis. Exp Hematol. 1996 Feb;24(2):364–370. [PubMed] [Google Scholar]
  7. Baum C., Forster P., Hegewisch-Becker S., Harbers K. An optimized electroporation protocol applicable to a wide range of cell lines. Biotechniques. 1994 Dec;17(6):1058–1062. [PubMed] [Google Scholar]
  8. Baum C., Hegewisch-Becker S., Eckert H. G., Stocking C., Ostertag W. Novel retroviral vectors for efficient expression of the multidrug resistance (mdr-1) gene in early hematopoietic cells. J Virol. 1995 Dec;69(12):7541–7547. doi: 10.1128/jvi.69.12.7541-7547.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bockamp E. O., McLaughlin F., Murrell A. M., Göttgens B., Robb L., Begley C. G., Green A. R. Lineage-restricted regulation of the murine SCL/TAL-1 promoter. Blood. 1995 Aug 15;86(4):1502–1514. [PubMed] [Google Scholar]
  10. Brandeis M., Frank D., Keshet I., Siegfried Z., Mendelsohn M., Nemes A., Temper V., Razin A., Cedar H. Sp1 elements protect a CpG island from de novo methylation. Nature. 1994 Sep 29;371(6496):435–438. doi: 10.1038/371435a0. [DOI] [PubMed] [Google Scholar]
  11. Chung S. W., Wolff L., Ruscetti S. Sequences responsible for the altered erythropoietin responsiveness in spleen focus-forming virus strain SFFVP-infected cells are localized to a 678-base-pair region at the 3' end of the envelope gene. J Virol. 1987 May;61(5):1661–1664. doi: 10.1128/jvi.61.5.1661-1664.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chérif-Zahar B., Le Van Kim C., Rouillac C., Raynal V., Cartron J. P., Colin Y. Organization of the gene (RHCE) encoding the human blood group RhCcEe antigens and characterization of the promoter region. Genomics. 1994 Jan 1;19(1):68–74. doi: 10.1006/geno.1994.1014. [DOI] [PubMed] [Google Scholar]
  13. Clark S. P., Mak T. W. Nucleotide sequences of the murine retrovirus Friend SFFVp long terminal repeats: identification of a structure with extensive dyad symmetry 5' to the TATA box. Nucleic Acids Res. 1982 May 25;10(10):3315–3330. doi: 10.1093/nar/10.10.3315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eckert H. G., Stockschläder M., Just U., Hegewisch-Becker S., Grez M., Uhde A., Zander A., Ostertag W., Baum C. High-dose multidrug resistance in primary human hematopoietic progenitor cells transduced with optimized retroviral vectors. Blood. 1996 Nov 1;88(9):3407–3415. [PubMed] [Google Scholar]
  15. Fagg B., Ostertag W. Friend erythroleukemia virus complex: role of viral components in modifying erythroid differentiation in mice. J Natl Cancer Inst. 1982 Mar;68(3):457–460. [PubMed] [Google Scholar]
  16. Faisst S., Meyer S. Compilation of vertebrate-encoded transcription factors. Nucleic Acids Res. 1992 Jan 11;20(1):3–26. doi: 10.1093/nar/20.1.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Friel J., Hughes D., Pragnell I., Stocking C., Laker C., Nowock J., Ostertag W., Padua R. A. The malignant histiocytosis sarcoma virus, a recombinant of Harvey murine sarcoma virus and Friend mink cell focus-forming virus, has acquired myeloid transformation specificity by alterations in the long terminal repeat. J Virol. 1990 Jan;64(1):369–378. doi: 10.1128/jvi.64.1.369-378.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Golemis E., Li Y., Fredrickson T. N., Hartley J. W., Hopkins N. Distinct segments within the enhancer region collaborate to specify the type of leukemia induced by nondefective Friend and Moloney viruses. J Virol. 1989 Jan;63(1):328–337. doi: 10.1128/jvi.63.1.328-337.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Grez M., Zörnig M., Nowock J., Ziegler M. A single point mutation activates the Moloney murine leukemia virus long terminal repeat in embryonal stem cells. J Virol. 1991 Sep;65(9):4691–4698. doi: 10.1128/jvi.65.9.4691-4698.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gégonne A., Bosselut R., Bailly R. A., Ghysdael J. Synergistic activation of the HTLV1 LTR Ets-responsive region by transcription factors Ets1 and Sp1. EMBO J. 1993 Mar;12(3):1169–1178. doi: 10.1002/j.1460-2075.1993.tb05758.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hamann L., Bayer K. U., Jensen K., Harbers K. Interaction of several related GC-box- and GT-box-binding proteins with the intronic enhancer is required for differential expression of the gb110 gene in embryonal carcinoma cells. Mol Cell Biol. 1994 Sep;14(9):5786–5793. doi: 10.1128/mcb.14.9.5786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Henderson A. J., Zou X., Calame K. L. C/EBP proteins activate transcription from the human immunodeficiency virus type 1 long terminal repeat in macrophages/monocytes. J Virol. 1995 Sep;69(9):5337–5344. doi: 10.1128/jvi.69.9.5337-5344.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Henkel G., Brown M. A. PU.1 and GATA: components of a mast cell-specific interleukin 4 intronic enhancer. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7737–7741. doi: 10.1073/pnas.91.16.7737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hickstein D. D., Baker D. M., Gollahon K. A., Back A. L. Identification of the promoter of the myelomonocytic leukocyte integrin CD11b. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2105–2109. doi: 10.1073/pnas.89.6.2105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hsiang Y. H., Spencer D., Wang S., Speck N. A., Raulet D. H. The role of viral enhancer "core" motif-related sequences in regulating T cell receptor-gamma and -delta gene expression. J Immunol. 1993 May 1;150(9):3905–3916. [PubMed] [Google Scholar]
  26. Ishimaru F., Shipp M. A. Analysis of the human CD10/neutral endopeptidase 24.11 promoter region: two separate regulatory elements. Blood. 1995 Jun 1;85(11):3199–3207. [PubMed] [Google Scholar]
  27. Itoh K., Friel J., Kluge N., Kina T., Kondo-Takaori A., Kawamata S., Uchiyama T., Ostertag W. A novel hematopoietic multilineage clone, Myl-D-7, is stromal cell-dependent and supported by an alternative mechanism(s) independent of stem cell factor/c-kit interaction. Blood. 1996 Apr 15;87(8):3218–3228. [PubMed] [Google Scholar]
  28. Lawrenz-Smith S. C., Thomas C. Y. The E47 transcription factor binds to the enhancer sequences of recombinant murine leukemia viruses and influences enhancer function. J Virol. 1995 Jul;69(7):4142–4148. doi: 10.1128/jvi.69.7.4142-4148.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Levanon D., Negreanu V., Bernstein Y., Bar-Am I., Avivi L., Groner Y. AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization. Genomics. 1994 Sep 15;23(2):425–432. doi: 10.1006/geno.1994.1519. [DOI] [PubMed] [Google Scholar]
  30. Li J. P., Baltimore D. Mechanism of leukemogenesis induced by mink cell focus-forming murine leukemia viruses. J Virol. 1991 May;65(5):2408–2414. doi: 10.1128/jvi.65.5.2408-2414.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Li Y., Golemis E., Hartley J. W., Hopkins N. Disease specificity of nondefective Friend and Moloney murine leukemia viruses is controlled by a small number of nucleotides. J Virol. 1987 Mar;61(3):693–700. doi: 10.1128/jvi.61.3.693-700.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Liu P., Tarlé S. A., Hajra A., Claxton D. F., Marlton P., Freedman M., Siciliano M. J., Collins F. S. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science. 1993 Aug 20;261(5124):1041–1044. doi: 10.1126/science.8351518. [DOI] [PubMed] [Google Scholar]
  33. Lu J., Maruyama M., Satake M., Bae S. C., Ogawa E., Kagoshima H., Shigesada K., Ito Y. Subcellular localization of the alpha and beta subunits of the acute myeloid leukemia-linked transcription factor PEBP2/CBF. Mol Cell Biol. 1995 Mar;15(3):1651–1661. doi: 10.1128/mcb.15.3.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Macleod D., Charlton J., Mullins J., Bird A. P. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 1994 Oct 1;8(19):2282–2292. doi: 10.1101/gad.8.19.2282. [DOI] [PubMed] [Google Scholar]
  35. Manley N. R., O'Connell M. A., Sharp P. A., Hopkins N. Nuclear factors that bind to the enhancer region of nondefective Friend murine leukemia virus. J Virol. 1989 Oct;63(10):4210–4223. doi: 10.1128/jvi.63.10.4210-4223.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Manley N. R., O'Connell M., Sun W., Speck N. A., Hopkins N. Two factors that bind to highly conserved sequences in mammalian type C retroviral enhancers. J Virol. 1993 Apr;67(4):1967–1975. doi: 10.1128/jvi.67.4.1967-1975.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Melnikova I. N., Crute B. E., Wang S., Speck N. A. Sequence specificity of the core-binding factor. J Virol. 1993 Apr;67(4):2408–2411. doi: 10.1128/jvi.67.4.2408-2411.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Meyers S., Downing J. R., Hiebert S. W. Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol Cell Biol. 1993 Oct;13(10):6336–6345. doi: 10.1128/mcb.13.10.6336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Miyajima I., Levitt L., Hara T., Bedell M. A., Copeland N. G., Jenkins N. A., Miyajima A. The murine interleukin-3 receptor alpha subunit gene: chromosomal localization, genomic structure, and promoter function. Blood. 1995 Mar 1;85(5):1246–1253. [PubMed] [Google Scholar]
  40. Miyoshi H., Ohira M., Shimizu K., Mitani K., Hirai H., Imai T., Yokoyama K., Soeda E., Ohki M. Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. Nucleic Acids Res. 1995 Jul 25;23(14):2762–2769. doi: 10.1093/nar/23.14.2762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ness S. A., Engel J. D. Vintage reds and whites: combinatorial transcription factor utilization in hematopoietic differentiation. Curr Opin Genet Dev. 1994 Oct;4(5):718–724. doi: 10.1016/0959-437x(94)90139-t. [DOI] [PubMed] [Google Scholar]
  42. Nielsen A. L., Pallisgaard N., Pedersen F. S., Jørgensen P. Basic helix-loop-helix proteins in murine type C retrovirus transcriptional regulation. J Virol. 1994 Sep;68(9):5638–5647. doi: 10.1128/jvi.68.9.5638-5647.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Nuchprayoon I., Meyers S., Scott L. M., Suzow J., Hiebert S., Friedman A. D. PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2 beta/CBF beta proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol Cell Biol. 1994 Aug;14(8):5558–5568. doi: 10.1128/mcb.14.8.5558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Ogawa E., Inuzuka M., Maruyama M., Satake M., Naito-Fujimoto M., Ito Y., Shigesada K. Molecular cloning and characterization of PEBP2 beta, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 alpha. Virology. 1993 May;194(1):314–331. doi: 10.1006/viro.1993.1262. [DOI] [PubMed] [Google Scholar]
  45. Ogawa E., Maruyama M., Kagoshima H., Inuzuka M., Lu J., Satake M., Shigesada K., Ito Y. PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6859–6863. doi: 10.1073/pnas.90.14.6859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Okuda T., van Deursen J., Hiebert S. W., Grosveld G., Downing J. R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996 Jan 26;84(2):321–330. doi: 10.1016/s0092-8674(00)80986-1. [DOI] [PubMed] [Google Scholar]
  47. Omori S. A., Wall R. Multiple motifs regulate the B-cell-specific promoter of the B29 gene. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11723–11727. doi: 10.1073/pnas.90.24.11723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Ostertag W., Stocking C., Johnson G. R., Kluge N., Kollek R., Franz T., Hess N. Transforming genes and target cells of murine spleen focus-forming viruses. Adv Cancer Res. 1987;48:193–355. doi: 10.1016/s0065-230x(08)60693-4. [DOI] [PubMed] [Google Scholar]
  49. Satake M., Nomura S., Yamaguchi-Iwai Y., Takahama Y., Hashimoto Y., Niki M., Kitamura Y., Ito Y. Expression of the Runt domain-encoding PEBP2 alpha genes in T cells during thymic development. Mol Cell Biol. 1995 Mar;15(3):1662–1670. doi: 10.1128/mcb.15.3.1662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sheridan P. L., Sheline C. T., Cannon K., Voz M. L., Pazin M. J., Kadonaga J. T., Jones K. A. Activation of the HIV-1 enhancer by the LEF-1 HMG protein on nucleosome-assembled DNA in vitro. Genes Dev. 1995 Sep 1;9(17):2090–2104. doi: 10.1101/gad.9.17.2090. [DOI] [PubMed] [Google Scholar]
  51. Speck N. A., Renjifo B., Golemis E., Fredrickson T. N., Hartley J. W., Hopkins N. Mutation of the core or adjacent LVb elements of the Moloney murine leukemia virus enhancer alters disease specificity. Genes Dev. 1990 Feb;4(2):233–242. doi: 10.1101/gad.4.2.233. [DOI] [PubMed] [Google Scholar]
  52. Spiro C., Li J. P., Bestwick R. K., Kabat D. An enhancer sequence instability that diversifies the cell repertoire for expression of a murine leukemia virus. Virology. 1988 Jun;164(2):350–361. doi: 10.1016/0042-6822(88)90548-x. [DOI] [PubMed] [Google Scholar]
  53. Sun W., Graves B. J., Speck N. A. Transactivation of the Moloney murine leukemia virus and T-cell receptor beta-chain enhancers by cbf and ets requires intact binding sites for both proteins. J Virol. 1995 Aug;69(8):4941–4949. doi: 10.1128/jvi.69.8.4941-4949.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Suzow J., Friedman A. D. The murine myeloperoxidase promoter contains several functional elements, one of which binds a cell type-restricted transcription factor, myeloid nuclear factor 1 (MyNF1). Mol Cell Biol. 1993 Apr;13(4):2141–2151. doi: 10.1128/mcb.13.4.2141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Takahashi A., Satake M., Yamaguchi-Iwai Y., Bae S. C., Lu J., Maruyama M., Zhang Y. W., Oka H., Arai N., Arai K. Positive and negative regulation of granulocyte-macrophage colony-stimulating factor promoter activity by AML1-related transcription factor, PEBP2. Blood. 1995 Jul 15;86(2):607–616. [PubMed] [Google Scholar]
  56. Thornell A., Hallberg B., Grundström T. Binding of SL3-3 enhancer factor 1 transcriptional activators to viral and chromosomal enhancer sequences. J Virol. 1991 Jan;65(1):42–50. doi: 10.1128/jvi.65.1.42-50.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Tsukiyama T., Niwa O., Yokoro K. Mechanism of suppression of the long terminal repeat of Moloney leukemia virus in mouse embryonal carcinoma cells. Mol Cell Biol. 1989 Nov;9(11):4670–4676. doi: 10.1128/mcb.9.11.4670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Tsukiyama T., Ueda H., Hirose S., Niwa O. Embryonal long terminal repeat-binding protein is a murine homolog of FTZ-F1, a member of the steroid receptor superfamily. Mol Cell Biol. 1992 Mar;12(3):1286–1291. doi: 10.1128/mcb.12.3.1286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Tumas D. B., Spangrude G. J., Brooks D. M., Williams C. D., Chesebro B. High-frequency cell surface expression of a foreign protein in murine hematopoietic stem cells using a new retroviral vector. Blood. 1996 Jan 15;87(2):509–517. [PubMed] [Google Scholar]
  60. Wang S., Wang Q., Crute B. E., Melnikova I. N., Keller S. R., Speck N. A. Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor. Mol Cell Biol. 1993 Jun;13(6):3324–3339. doi: 10.1128/mcb.13.6.3324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Watanabe N., Nishi M., Ikawa Y., Amanuma H. Conversion of Friend mink cell focus-forming virus to Friend spleen focus-forming virus by modification of the 3' half of the env gene. J Virol. 1991 Jan;65(1):132–137. doi: 10.1128/jvi.65.1.132-137.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Weiher H., König M., Gruss P. Multiple point mutations affecting the simian virus 40 enhancer. Science. 1983 Feb 11;219(4585):626–631. doi: 10.1126/science.6297005. [DOI] [PubMed] [Google Scholar]
  63. Wijmenga C., Speck N. A., Dracopoli N. C., Hofker M. H., Liu P., Collins F. S. Identification of a new murine runt domain-containing gene, Cbfa3, and localization of the human homolog, CBFA3, to chromosome 1p35-pter. Genomics. 1995 Apr 10;26(3):611–614. doi: 10.1016/0888-7543(95)80185-o. [DOI] [PubMed] [Google Scholar]
  64. Wolff L., Ruscetti S. Tissue tropism of a leukemogenic murine retrovirus is determined by sequences outside of the long terminal repeats. Proc Natl Acad Sci U S A. 1986 May;83(10):3376–3380. doi: 10.1073/pnas.83.10.3376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Wotton D., Ghysdael J., Wang S., Speck N. A., Owen M. J. Cooperative binding of Ets-1 and core binding factor to DNA. Mol Cell Biol. 1994 Jan;14(1):840–850. doi: 10.1128/mcb.14.1.840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Wurster A. L., Siu G., Leiden J. M., Hedrick S. M. Elf-1 binds to a critical element in a second CD4 enhancer. Mol Cell Biol. 1994 Oct;14(10):6452–6463. doi: 10.1128/mcb.14.10.6452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Yamamoto K., Tojo A., Aoki N., Shibuya M. Characterization of the promoter region of the human c-kit proto-oncogene. Jpn J Cancer Res. 1993 Nov;84(11):1136–1144. doi: 10.1111/j.1349-7006.1993.tb02813.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Yasuda H., Galli S. J., Geissler E. N. Cloning and functional analysis of the mouse c-kit promoter. Biochem Biophys Res Commun. 1993 Mar 31;191(3):893–901. doi: 10.1006/bbrc.1993.1301. [DOI] [PubMed] [Google Scholar]
  69. Zaiman A. L., Lewis A. F., Crute B. E., Speck N. A., Lenz J. Transcriptional activity of core binding factor-alpha (AML1) and beta subunits on murine leukemia virus enhancer cores. J Virol. 1995 May;69(5):2898–2906. doi: 10.1128/jvi.69.5.2898-2906.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES