Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Sep;71(9):6381–6389. doi: 10.1128/jvi.71.9.6381-6389.1997

Role of preterminal protein processing in adenovirus replication.

A Webster 1, I R Leith 1, J Nicholson 1, J Hounsell 1, R T Hay 1
PMCID: PMC191911  PMID: 9261355

Abstract

Preterminal protein (pTP), the protein primer for adenovirus DNA replication, is processed at two sites by the virus-encoded protease to yield mature terminal protein (TP). Here we demonstrate that processing to TP, via an intermediate (iTP), is conserved in all serotypes sequenced to date; and in determining the sites cleaved in Ad4 pTP, we extend the previously published substrate specificity of human adenovirus proteases to include a glutamine residue at P4. Furthermore, using monoclonal antibodies raised against pTP, we show that processing to iTP and TP are temporally separated in the infectious cycle, with processing to iTP taking place outside the virus particles. In vitro and in vivo studies of viral DNA replication reveal that iTP can act as a template for initiation and elongation and argue against a role for virus-encoded protease in switching off DNA replication. Virus DNA with TP attached to its 5' end (TP-DNA) has been studied extensively in in vitro DNA replication assays. Given that in vivo pTP-DNA, not TP-DNA, is the template for all but the first round of replication, the two templates were compared in vitro and shown to have different properties. Immunofluorescence studies suggest that a region spanning the TP cleavage site is involved in defining the subnuclear localization of pTP. Therefore, a likely role for the processing of pTP-DNA is to create a distinct template for early transcription (TP-DNA), while the terminal protein moiety, be it TP or pTP, serves to guide the template to the appropriate subcellular location through the course of infection.

Full Text

The Full Text of this article is available as a PDF (660.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. W. The proteinase polypeptide of adenovirus serotype 2 virions. Virology. 1990 Jul;177(1):259–272. doi: 10.1016/0042-6822(90)90479-b. [DOI] [PubMed] [Google Scholar]
  2. Angeletti P. C., Engler J. A. Tyrosine kinase-dependent release of an adenovirus preterminal protein complex from the nuclear matrix. J Virol. 1996 May;70(5):3060–3067. doi: 10.1128/jvi.70.5.3060-3067.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Armentero M. T., Horwitz M., Mermod N. Targeting of DNA polymerase to the adenovirus origin of DNA replication by interaction with nuclear factor I. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11537–11541. doi: 10.1073/pnas.91.24.11537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bosher J., Dawson A., Hay R. T. Nuclear factor I is specifically targeted to discrete subnuclear sites in adenovirus type 2-infected cells. J Virol. 1992 May;66(5):3140–3150. doi: 10.1128/jvi.66.5.3140-3150.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bosher J., Robinson E. C., Hay R. T. Interactions between the adenovirus type 2 DNA polymerase and the DNA binding domain of nuclear factor I. New Biol. 1990 Dec;2(12):1083–1090. [PubMed] [Google Scholar]
  6. Chen M., Mermod N., Horwitz M. S. Protein-protein interactions between adenovirus DNA polymerase and nuclear factor I mediate formation of the DNA replication preinitiation complex. J Biol Chem. 1990 Oct 25;265(30):18634–18642. [PubMed] [Google Scholar]
  7. Chen P. H., Ornelles D. A., Shenk T. The adenovirus L3 23-kilodalton proteinase cleaves the amino-terminal head domain from cytokeratin 18 and disrupts the cytokeratin network of HeLa cells. J Virol. 1993 Jun;67(6):3507–3514. doi: 10.1128/jvi.67.6.3507-3514.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cleat P. H., Hay R. T. Co-operative interactions between NFI and the adenovirus DNA binding protein at the adenovirus origin of replication. EMBO J. 1989 Jun;8(6):1841–1848. doi: 10.1002/j.1460-2075.1989.tb03579.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coenjaerts F. E., van Oosterhout J. A., van der Vliet P. C. The Oct-1 POU domain stimulates adenovirus DNA replication by a direct interaction between the viral precursor terminal protein-DNA polymerase complex and the POU homeodomain. EMBO J. 1994 Nov 15;13(22):5401–5409. doi: 10.1002/j.1460-2075.1994.tb06875.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Coenjaerts F. E., van der Vliet P. C. Early dissociation of nuclear factor I from the origin during initiation of adenovirus DNA replication studied by origin immobilization. Nucleic Acids Res. 1994 Dec 11;22(24):5235–5240. doi: 10.1093/nar/22.24.5235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cotten M., Weber J. M. The adenovirus protease is required for virus entry into host cells. Virology. 1995 Nov 10;213(2):494–502. doi: 10.1006/viro.1995.0022. [DOI] [PubMed] [Google Scholar]
  12. Dekker J., van Oosterhout J. A., van der Vliet P. C. Two regions within the DNA binding domain of nuclear factor I interact with DNA and stimulate adenovirus DNA replication independently. Mol Cell Biol. 1996 Aug;16(8):4073–4080. doi: 10.1128/mcb.16.8.4073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ding J., McGrath W. J., Sweet R. M., Mangel W. F. Crystal structure of the human adenovirus proteinase with its 11 amino acid cofactor. EMBO J. 1996 Apr 15;15(8):1778–1783. [PMC free article] [PubMed] [Google Scholar]
  14. Doucas V., Ishov A. M., Romo A., Juguilon H., Weitzman M. D., Evans R. M., Maul G. G. Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure. Genes Dev. 1996 Jan 15;10(2):196–207. doi: 10.1101/gad.10.2.196. [DOI] [PubMed] [Google Scholar]
  15. Fredman J. N., Engler J. A. Adenovirus precursor to terminal protein interacts with the nuclear matrix in vivo and in vitro. J Virol. 1993 Jun;67(6):3384–3395. doi: 10.1128/jvi.67.6.3384-3395.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fredman J. N., Pettit S. C., Horwitz M. S., Engler J. A. Linker insertion mutations in the adenovirus preterminal protein that affect DNA replication activity in vivo and in vitro. J Virol. 1991 Sep;65(9):4591–4597. doi: 10.1128/jvi.65.9.4591-4597.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Freimuth P. I., Ginsberg H. S. Codon insertion mutants of the adenovirus terminal protein. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7816–7820. doi: 10.1073/pnas.83.20.7816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Goding C. R., Russell W. C. Adenovirus cores can function as templates in in vitro DNA replication. EMBO J. 1983;2(3):339–344. doi: 10.1002/j.1460-2075.1983.tb01428.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hay R. T., McDougall I. M. Viable viruses with deletions in the left inverted terminal repeat define the adenovirus origin of DNA replication. J Gen Virol. 1986 Feb;67(Pt 2):321–332. doi: 10.1099/0022-1317-67-2-321. [DOI] [PubMed] [Google Scholar]
  20. Israël N., Hazan U., Alcami J., Munier A., Arenzana-Seisdedos F., Bachelerie F., Israël A., Virelizier J. L. Tumor necrosis factor stimulates transcription of HIV-1 in human T lymphocytes, independently and synergistically with mitogens. J Immunol. 1989 Dec 15;143(12):3956–3960. [PubMed] [Google Scholar]
  21. Jaffray E., Wood K. M., Hay R. T. Domain organization of I kappa B alpha and sites of interaction with NF-kappa B p65. Mol Cell Biol. 1995 Apr;15(4):2166–2172. doi: 10.1128/mcb.15.4.2166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Leith I. R., Hay R. T., Russell W. C. Adenovirus subviral particles and cores can support limited DNA replication. J Gen Virol. 1989 Dec;70(Pt 12):3235–3248. doi: 10.1099/0022-1317-70-12-3235. [DOI] [PubMed] [Google Scholar]
  23. Mangel W. F., McGrath W. J., Toledo D. L., Anderson C. W. Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature. 1993 Jan 21;361(6409):274–275. doi: 10.1038/361274a0. [DOI] [PubMed] [Google Scholar]
  24. Mul Y. M., Van der Vliet P. C. Nuclear factor I enhances adenovirus DNA replication by increasing the stability of a preinitiation complex. EMBO J. 1992 Feb;11(2):751–760. doi: 10.1002/j.1460-2075.1992.tb05108.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mul Y. M., Verrijzer C. P., van der Vliet P. C. Transcription factors NFI and NFIII/oct-1 function independently, employing different mechanisms to enhance adenovirus DNA replication. J Virol. 1990 Nov;64(11):5510–5518. doi: 10.1128/jvi.64.11.5510-5518.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pettit S. C., Horwitz M. S., Engler J. A. Mutations of the precursor to the terminal protein of adenovirus serotypes 2 and 5. J Virol. 1989 Dec;63(12):5244–5250. doi: 10.1128/jvi.63.12.5244-5250.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pombo A., Ferreira J., Bridge E., Carmo-Fonseca M. Adenovirus replication and transcription sites are spatially separated in the nucleus of infected cells. EMBO J. 1994 Nov 1;13(21):5075–5085. doi: 10.1002/j.1460-2075.1994.tb06837.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pronk R., van der Vliet P. C. The adenovirus terminal protein influences binding of replication proteins and changes the origin structure. Nucleic Acids Res. 1993 May 25;21(10):2293–2300. doi: 10.1093/nar/21.10.2293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pruijn G. J., van Driel W., van der Vliet P. C. Nuclear factor III, a novel sequence-specific DNA-binding protein from HeLa cells stimulating adenovirus DNA replication. Nature. 1986 Aug 14;322(6080):656–659. doi: 10.1038/322656a0. [DOI] [PubMed] [Google Scholar]
  30. Rancourt C., Keyvani-Amineh H., Sircar S., Labrecque P., Weber J. M. Proline 137 is critical for adenovirus protease encapsidation and activation but not enzyme activity. Virology. 1995 May 10;209(1):167–173. doi: 10.1006/viro.1995.1240. [DOI] [PubMed] [Google Scholar]
  31. Roovers D. J., Overman P. F., Chen X. Q., Sussenbach J. S. Linker mutation scanning of the genes encoding the adenovirus type 5 terminal protein precursor and DNA polymerase. Virology. 1991 Jan;180(1):273–284. doi: 10.1016/0042-6822(91)90032-7. [DOI] [PubMed] [Google Scholar]
  32. Roovers D. J., van der Lee F. M., van der Wees J., Sussenbach J. S. Analysis of the adenovirus type 5 terminal protein precursor and DNA polymerase by linker insertion mutagenesis. J Virol. 1993 Jan;67(1):265–276. doi: 10.1128/jvi.67.1.265-276.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Salas M. Protein-priming of DNA replication. Annu Rev Biochem. 1991;60:39–71. doi: 10.1146/annurev.bi.60.070191.000351. [DOI] [PubMed] [Google Scholar]
  34. Schaack J., Ho W. Y., Freimuth P., Shenk T. Adenovirus terminal protein mediates both nuclear matrix association and efficient transcription of adenovirus DNA. Genes Dev. 1990 Jul;4(7):1197–1208. doi: 10.1101/gad.4.7.1197. [DOI] [PubMed] [Google Scholar]
  35. Smart J. E., Stillman B. W. Adenovirus terminal protein precursor. Partial amino acid sequence and the site of covalent linkage to virus DNA. J Biol Chem. 1982 Nov 25;257(22):13499–13506. [PubMed] [Google Scholar]
  36. Stanglmaier M., Winnacker E. L. Cloning, sequence determination and functional expression of the genes encoding adenovirus type-4 polymerase and the terminal protein precursor. Gene. 1996 Feb 12;168(2):177–182. doi: 10.1016/0378-1119(95)00801-2. [DOI] [PubMed] [Google Scholar]
  37. Stillman B. W., Lewis J. B., Chow L. T., Mathews M. B., Smart J. E. Identification of the gene and mRNA for the adenovirus terminal protein precursor. Cell. 1981 Feb;23(2):497–508. doi: 10.1016/0092-8674(81)90145-8. [DOI] [PubMed] [Google Scholar]
  38. Stuiver M. H., van der Vliet P. C. Adenovirus DNA-binding protein forms a multimeric protein complex with double-stranded DNA and enhances binding of nuclear factor I. J Virol. 1990 Jan;64(1):379–386. doi: 10.1128/jvi.64.1.379-386.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Temperley S. M., Burrow C. R., Kelly T. J., Hay R. T. Identification of two distinct regions within the adenovirus minimal origin of replication that are required for adenovirus type 4 DNA replication in vitro. J Virol. 1991 Sep;65(9):5037–5044. doi: 10.1128/jvi.65.9.5037-5044.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Temperley S. M., Hay R. T. Recognition of the adenovirus type 2 origin of DNA replication by the virally encoded DNA polymerase and preterminal proteins. EMBO J. 1992 Feb;11(2):761–768. doi: 10.1002/j.1460-2075.1992.tb05109.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Vrati S., Brookes D. E., Strike P., Khatri A., Boyle D. B., Both G. W. Unique genome arrangement of an ovine adenovirus: identification of new proteins and proteinase cleavage sites. Virology. 1996 Jun 1;220(1):186–199. doi: 10.1006/viro.1996.0299. [DOI] [PubMed] [Google Scholar]
  42. Watson C. J., Hay R. T. Expression of adenovirus type 2 DNA polymerase in insect cells infected with a recombinant baculovirus. Nucleic Acids Res. 1990 Mar 11;18(5):1167–1173. doi: 10.1093/nar/18.5.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Weber J. M., Tihanyi K. Adenovirus endopeptidases. Methods Enzymol. 1994;244:595–604. doi: 10.1016/0076-6879(94)44043-3. [DOI] [PubMed] [Google Scholar]
  44. Weber J. Genetic analysis of adenovirus type 2 III. Temperature sensitivity of processing viral proteins. J Virol. 1976 Feb;17(2):462–471. doi: 10.1128/jvi.17.2.462-471.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Webster A., Hay R. T., Kemp G. The adenovirus protease is activated by a virus-coded disulphide-linked peptide. Cell. 1993 Jan 15;72(1):97–104. doi: 10.1016/0092-8674(93)90053-s. [DOI] [PubMed] [Google Scholar]
  46. Webster A., Leith I. R., Hay R. T. Activation of adenovirus-coded protease and processing of preterminal protein. J Virol. 1994 Nov;68(11):7292–7300. doi: 10.1128/jvi.68.11.7292-7300.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Webster A., Leith I. R., Hay R. T. Domain organization of the adenovirus preterminal protein. J Virol. 1997 Jan;71(1):539–547. doi: 10.1128/jvi.71.1.539-547.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Webster A., Russell S., Talbot P., Russell W. C., Kemp G. D. Characterization of the adenovirus proteinase: substrate specificity. J Gen Virol. 1989 Dec;70(Pt 12):3225–3234. doi: 10.1099/0022-1317-70-12-3225. [DOI] [PubMed] [Google Scholar]
  49. Winters W. D., Russell W. C. Studies on the assembly of adenovirus in vitro. J Gen Virol. 1971 Feb;10(2):181–194. doi: 10.1099/0022-1317-10-2-181. [DOI] [PubMed] [Google Scholar]
  50. Yeh-Kai L., Akusjärvi G., Aleström P., Pettersson U., Tremblay M., Weber J. Genetic identification of an endoproteinase encoded by the adenovirus genome. J Mol Biol. 1983 Jun 15;167(1):217–222. doi: 10.1016/s0022-2836(83)80044-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES