Abstract
The conserved 3'-terminal stem-loop (3' SL) of the West Nile virus (WNV) genomic RNA was previously used to probe for cellular proteins that may be involved in flavivirus replication and three cellular proteins were detected that specifically interact with the WNV 3' SL RNA (J. L. Blackwell and M. A. Brinton, J. Virol. 69:5650-5658, 1995). In this study, one of these cellular proteins was purified to apparent homogeneity by ammonium sulfate precipitation and liquid chromatography. Amino acid sequence Western blotting, and supershift analyses identified the cellular protein as translation elongation factor-1 alpha (EF-1 alpha). Competition gel mobility shift assays demonstrated that the interaction between EF-1 alpha and WNV 3' SL RNA was specific. Dephosphorylation of EF-1 alpha by calf intestinal alkaline phosphatase inhibited its binding to WNV 3' SL RNA. The apparent equilibrium dissociation constant for the interaction between EF-1 alpha and WNV 3' SL RNA was calculated to be 1.1 x 10(-9) M. Calculation of the stoichiometry of the interaction indicated that one molecule of EF-1 alpha binds to each molecule of WNV 3' SL RNA. Using RNase footprinting and nitrocellulose filter binding assays, we detected a high-activity binding site on the main stem of the WNV 3' SL RNA. Interaction with EF-1 alpha at the high-activity binding site was sequence specific, since nucleotide substitution in this region reduced the binding activity of the WNV 3' SL RNA for EF-1 alpha by approximately 60%. Two low-activity binding sites were also detected, and each accounted for approximately 15 to 20% of the binding activity. Intracellular association between the host protein and the viral RNA was suggested by coimmunoprecipitation of WNV genomic RNA and EF-1 alpha, using an anti-EF-1 alpha antibody.
Full Text
The Full Text of this article is available as a PDF (3.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amons R., Pluijms W., Roobol K., Möller W. Sequence homology between EF-1 alpha, the alpha-chain of elongation factor 1 from Artemia salina and elongation factor EF-Tu from Escherichia coli. FEBS Lett. 1983 Mar 7;153(1):37–42. doi: 10.1016/0014-5793(83)80115-x. [DOI] [PubMed] [Google Scholar]
- Ann D. K., Moutsatsos I. K., Nakamura T., Lin H. H., Mao P. L., Lee M. J., Chin S., Liem R. K., Wang E. Isolation and characterization of the rat chromosomal gene for a polypeptide (pS1) antigenically related to statin. J Biol Chem. 1991 Jun 5;266(16):10429–10437. [PubMed] [Google Scholar]
- Barton D. J., Sawicki S. G., Sawicki D. L. Solubilization and immunoprecipitation of alphavirus replication complexes. J Virol. 1991 Mar;65(3):1496–1506. doi: 10.1128/jvi.65.3.1496-1506.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bassell G. J., Powers C. M., Taneja K. L., Singer R. H. Single mRNAs visualized by ultrastructural in situ hybridization are principally localized at actin filament intersections in fibroblasts. J Cell Biol. 1994 Aug;126(4):863–876. doi: 10.1083/jcb.126.4.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bensch K., Pieper U., Ott G., Schirmer N., Sprinzl M., Pingoud A. How many EF-Tu molecules participate in aminoacyl-tRNA binding? Biochimie. 1991 Jul-Aug;73(7-8):1045–1050. doi: 10.1016/0300-9084(91)90146-r. [DOI] [PubMed] [Google Scholar]
- Black A. C., Luo J., Watanabe C., Chun S., Bakker A., Fraser J. K., Morgan J. P., Rosenblatt J. D. Polypyrimidine tract-binding protein and heterogeneous nuclear ribonucleoprotein A1 bind to human T-cell leukemia virus type 2 RNA regulatory elements. J Virol. 1995 Nov;69(11):6852–6858. doi: 10.1128/jvi.69.11.6852-6858.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blackwell J. L., Brinton M. A. BHK cell proteins that bind to the 3' stem-loop structure of the West Nile virus genome RNA. J Virol. 1995 Sep;69(9):5650–5658. doi: 10.1128/jvi.69.9.5650-5658.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blumenthal T., Carmichael G. G. RNA replication: function and structure of Qbeta-replicase. Annu Rev Biochem. 1979;48:525–548. doi: 10.1146/annurev.bi.48.070179.002521. [DOI] [PubMed] [Google Scholar]
- Blumenthal T. Interaction of host-coded and virus-coded polypeptides in RNA phage replication. Proc R Soc Lond B Biol Sci. 1980 Nov 19;210(1180):321–335. doi: 10.1098/rspb.1980.0137. [DOI] [PubMed] [Google Scholar]
- Brinton M. A. Analysis of extracellular West Nile virus particles produced by cell cultures from genetically resistant and susceptible mice indicates enhanced amplification of defective interfering particles by resistant cultures. J Virol. 1983 Jun;46(3):860–870. doi: 10.1128/jvi.46.3.860-870.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brinton M. A., Fernandez A. V., Dispoto J. H. The 3'-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology. 1986 Aug;153(1):113–121. doi: 10.1016/0042-6822(86)90012-7. [DOI] [PubMed] [Google Scholar]
- Browning K. S., Humphreys J., Hobbs W., Smith G. B., Ravel J. M. Determination of the amounts of the protein synthesis initiation and elongation factors in wheat germ. J Biol Chem. 1990 Oct 15;265(29):17967–17973. [PubMed] [Google Scholar]
- Carvalho J. F., Carvalho M. D., Merrick W. C. Purification of various forms of elongation factor 1 from rabbit reticulocytes. Arch Biochem Biophys. 1984 Nov 1;234(2):591–602. doi: 10.1016/0003-9861(84)90309-6. [DOI] [PubMed] [Google Scholar]
- Chang Y. N., Kenan D. J., Keene J. D., Gatignol A., Jeang K. T. Direct interactions between autoantigen La and human immunodeficiency virus leader RNA. J Virol. 1994 Nov;68(11):7008–7020. doi: 10.1128/jvi.68.11.7008-7020.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Condeelis J. Elongation factor 1 alpha, translation and the cytoskeleton. Trends Biochem Sci. 1995 May;20(5):169–170. doi: 10.1016/s0968-0004(00)88998-7. [DOI] [PubMed] [Google Scholar]
- Edward Z., Takegami T. Localization and functions of Japanese encephalitis virus nonstructural proteins NS3 and NS5 for viral RNA synthesis in the infected cells. Microbiol Immunol. 1993;37(3):239–243. doi: 10.1111/j.1348-0421.1993.tb03206.x. [DOI] [PubMed] [Google Scholar]
- Gatignol A., Buckler-White A., Berkhout B., Jeang K. T. Characterization of a human TAR RNA-binding protein that activates the HIV-1 LTR. Science. 1991 Mar 29;251(5001):1597–1600. doi: 10.1126/science.2011739. [DOI] [PubMed] [Google Scholar]
- Grange T., Bouloy M., Girard M. Stable secondary structures at the 3'-end of the genome of yellow fever virus (17 D vaccine strain). FEBS Lett. 1985 Aug 19;188(1):159–163. doi: 10.1016/0014-5793(85)80895-4. [DOI] [PubMed] [Google Scholar]
- Grun J. B., Brinton M. A. Dissociation of NS5 from cell fractions containing West Nile virus-specific polymerase activity. J Virol. 1987 Nov;61(11):3641–3644. doi: 10.1128/jvi.61.11.3641-3644.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris K. S., Xiang W., Alexander L., Lane W. S., Paul A. V., Wimmer E. Interaction of poliovirus polypeptide 3CDpro with the 5' and 3' termini of the poliovirus genome. Identification of viral and cellular cofactors needed for efficient binding. J Biol Chem. 1994 Oct 28;269(43):27004–27014. [PubMed] [Google Scholar]
- Hayashi Y., Urade R., Utsumi S., Kito M. Anchoring of peptide elongation factor EF-1 alpha by phosphatidylinositol at the endoplasmic reticulum membrane. J Biochem. 1989 Oct;106(4):560–563. doi: 10.1093/oxfordjournals.jbchem.a122895. [DOI] [PubMed] [Google Scholar]
- Hayes R. J., Buck K. W. Complete replication of a eukaryotic virus RNA in vitro by a purified RNA-dependent RNA polymerase. Cell. 1990 Oct 19;63(2):363–368. doi: 10.1016/0092-8674(90)90169-f. [DOI] [PubMed] [Google Scholar]
- Joshi R. L., Ravel J. M., Haenni A. L. Interaction of turnip yellow mosaic virus Val-RNA with eukaryotic elongation factor EF-1 [alpha]. Search for a function. EMBO J. 1986 Jun;5(6):1143–1148. doi: 10.1002/j.1460-2075.1986.tb04339.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinzy T. G., Freeman J. P., Johnson A. E., Merrick W. C. A model for the aminoacyl-tRNA binding site of eukaryotic elongation factor 1 alpha. J Biol Chem. 1992 Jan 25;267(3):1623–1632. [PubMed] [Google Scholar]
- Kjeldgaard M., Nissen P., Thirup S., Nyborg J. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure. 1993 Sep 15;1(1):35–50. doi: 10.1016/0969-2126(93)90007-4. [DOI] [PubMed] [Google Scholar]
- Kjeldgaard M., Nyborg J. Refined structure of elongation factor EF-Tu from Escherichia coli. J Mol Biol. 1992 Feb 5;223(3):721–742. doi: 10.1016/0022-2836(92)90986-t. [DOI] [PubMed] [Google Scholar]
- Kusov Y., Weitz M., Dollenmeier G., Gauss-Müller V., Siegl G. RNA-protein interactions at the 3' end of the hepatitis A virus RNA. J Virol. 1996 Mar;70(3):1890–1897. doi: 10.1128/jvi.70.3.1890-1897.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Landers T. A., Blumenthal T., Weber K. Function and structure in ribonucleic acid phage Q beta ribonucleic acid replicase. The roles of the different subunits in transcription of synthetic templates. J Biol Chem. 1974 Sep 25;249(18):5801–5808. [PubMed] [Google Scholar]
- Linz J. E., Lira L. M., Sypherd P. S. The primary structure and the functional domains of an elongation factor-1 alpha from Mucor racemosus. J Biol Chem. 1986 Nov 15;261(32):15022–15029. [PubMed] [Google Scholar]
- Louie A., Ribeiro N. S., Reid B. R., Jurnak F. Relative affinities of all Escherichia coli aminoacyl-tRNAs for elongation factor Tu-GTP. J Biol Chem. 1984 Apr 25;259(8):5010–5016. [PubMed] [Google Scholar]
- Lu C. D., Houghton J. E., Abdelal A. T. Characterization of the arginine repressor from Salmonella typhimurium and its interactions with the carAB operator. J Mol Biol. 1992 May 5;225(1):11–24. doi: 10.1016/0022-2836(92)91022-h. [DOI] [PubMed] [Google Scholar]
- Mandl C. W., Holzmann H., Kunz C., Heinz F. X. Complete genomic sequence of Powassan virus: evaluation of genetic elements in tick-borne versus mosquito-borne flaviviruses. Virology. 1993 May;194(1):173–184. doi: 10.1006/viro.1993.1247. [DOI] [PubMed] [Google Scholar]
- Men R., Bray M., Clark D., Chanock R. M., Lai C. J. Dengue type 4 virus mutants containing deletions in the 3' noncoding region of the RNA genome: analysis of growth restriction in cell culture and altered viremia pattern and immunogenicity in rhesus monkeys. J Virol. 1996 Jun;70(6):3930–3937. doi: 10.1128/jvi.70.6.3930-3937.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mohan P. M., Padmanabhan R. Detection of stable secondary structure at the 3' terminus of dengue virus type 2 RNA. Gene. 1991 Dec 15;108(2):185–191. doi: 10.1016/0378-1119(91)90433-c. [DOI] [PubMed] [Google Scholar]
- Nakhasi H. L., Cao X. Q., Rouault T. A., Liu T. Y. Specific binding of host cell proteins to the 3'-terminal stem-loop structure of rubella virus negative-strand RNA. J Virol. 1991 Nov;65(11):5961–5967. doi: 10.1128/jvi.65.11.5961-5967.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakhasi H. L., Rouault T. A., Haile D. J., Liu T. Y., Klausner R. D. Specific high-affinity binding of host cell proteins to the 3' region of rubella virus RNA. New Biol. 1990 Mar;2(3):255–264. [PubMed] [Google Scholar]
- Nakhasi H. L., Singh N. K., Pogue G. P., Cao X. Q., Rouault T. A. Identification and characterization of host factor interactions with cis-acting elements of rubella virus RNA. Arch Virol Suppl. 1994;9:255–267. doi: 10.1007/978-3-7091-9326-6_26. [DOI] [PubMed] [Google Scholar]
- Nissen P., Kjeldgaard M., Thirup S., Polekhina G., Reshetnikova L., Clark B. F., Nyborg J. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science. 1995 Dec 1;270(5241):1464–1472. doi: 10.1126/science.270.5241.1464. [DOI] [PubMed] [Google Scholar]
- Nordnes S., Krauss S., Johansen T. cDNA sequence of zebrafish (Brachydanio rerio) translation elongation factor-1 alpha: molecular phylogeny of eukaryotes based on elongation factor-1 alpha protein sequences. Biochim Biophys Acta. 1994 Oct 18;1219(2):529–532. doi: 10.1016/0167-4781(94)90081-7. [DOI] [PubMed] [Google Scholar]
- O'Neill R. E., Palese P. Cis-acting signals and trans-acting factors involved in influenza virus RNA synthesis. Infect Agents Dis. 1994 Apr-Jun;3(2-3):77–84. [PubMed] [Google Scholar]
- Ofengand J. Assay for AA-tRNA recognition by the EFTu-GTP complex of Escherichia coli. Methods Enzymol. 1974;29:661–667. doi: 10.1016/0076-6879(74)29057-8. [DOI] [PubMed] [Google Scholar]
- Ott G., Schiesswohl M., Kiesewetter S., Förster C., Arnold L., Erdmann V. A., Sprinzl M. Ternary complexes of Escherichia coli aminoacyl-tRNAs with the elongation factor Tu and GTP: thermodynamic and structural studies. Biochim Biophys Acta. 1990 Aug 27;1050(1-3):222–225. doi: 10.1016/0167-4781(90)90170-7. [DOI] [PubMed] [Google Scholar]
- Palen E., Huang T. T., Traugh J. A. Comparison of phosphorylation of elongation factor 1 from different species by casein kinase II. FEBS Lett. 1990 Nov 12;274(1-2):12–14. doi: 10.1016/0014-5793(90)81317-h. [DOI] [PubMed] [Google Scholar]
- Pardigon N., Strauss J. H. Mosquito homolog of the La autoantigen binds to Sindbis virus RNA. J Virol. 1996 Feb;70(2):1173–1181. doi: 10.1128/jvi.70.2.1173-1181.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters H. I., Chang Y. W., Traugh J. A. Phosphorylation of elongation factor 1 (EF-1) by protein kinase C stimulates GDP/GTP-exchange activity. Eur J Biochem. 1995 Dec 1;234(2):550–556. doi: 10.1111/j.1432-1033.1995.550_b.x. [DOI] [PubMed] [Google Scholar]
- Quadt R., Kao C. C., Browning K. S., Hershberger R. P., Ahlquist P. Characterization of a host protein associated with brome mosaic virus RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1498–1502. doi: 10.1073/pnas.90.4.1498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riis B., Rattan S. I., Clark B. F., Merrick W. C. Eukaryotic protein elongation factors. Trends Biochem Sci. 1990 Nov;15(11):420–424. doi: 10.1016/0968-0004(90)90279-k. [DOI] [PubMed] [Google Scholar]
- Schulman R. G., Hilbers C. W., Miller D. L. Letters to the editor: Nuclear magnetic resonance studies of protein-RNA interactions. I. The elongation factor Tu-GTP aminoacyl-tRNA complex. J Mol Biol. 1974 Dec 15;90(3):601–607. doi: 10.1016/0022-2836(74)90237-x. [DOI] [PubMed] [Google Scholar]
- Shi P. Y., Brinton M. A., Veal J. M., Zhong Y. Y., Wilson W. D. Evidence for the existence of a pseudoknot structure at the 3' terminus of the flavivirus genomic RNA. Biochemistry. 1996 Apr 2;35(13):4222–4230. doi: 10.1021/bi952398v. [DOI] [PubMed] [Google Scholar]
- Singh N. K., Atreya C. D., Nakhasi H. L. Identification of calreticulin as a rubella virus RNA binding protein. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12770–12774. doi: 10.1073/pnas.91.26.12770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sriskanda V. S., Pruss G., Ge X., Vance V. B. An eight-nucleotide sequence in the potato virus X 3' untranslated region is required for both host protein binding and viral multiplication. J Virol. 1996 Aug;70(8):5266–5271. doi: 10.1128/jvi.70.8.5266-5271.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takegami T., Washizu M., Yasui K. Nucleotide sequence at the 3' end of Japanese encephalitis virus genomic RNA. Virology. 1986 Jul 30;152(2):483–486. doi: 10.1016/0042-6822(86)90152-2. [DOI] [PubMed] [Google Scholar]
- Vaheri A., Sedwick W. D., Plotkin S. A., Maes R. Cytopathic effect of rubella virus in RHK21 cells and growth to high titers in suspension culture. Virology. 1965 Oct;27(2):239–241. doi: 10.1016/0042-6822(65)90170-4. [DOI] [PubMed] [Google Scholar]
- Venema R. C., Peters H. I., Traugh J. A. Phosphorylation of elongation factor 1 (EF-1) and valyl-tRNA synthetase by protein kinase C and stimulation of EF-1 activity. J Biol Chem. 1991 Jul 5;266(19):12574–12580. [PubMed] [Google Scholar]
- Venema R. C., Peters H. I., Traugh J. A. Phosphorylation of valyl-tRNA synthetase and elongation factor 1 in response to phorbol esters is associated with stimulation of both activities. J Biol Chem. 1991 Jun 25;266(18):11993–11998. [PubMed] [Google Scholar]
- Wallner G., Mandl C. W., Kunz C., Heinz F. X. The flavivirus 3'-noncoding region: extensive size heterogeneity independent of evolutionary relationships among strains of tick-borne encephalitis virus. Virology. 1995 Oct 20;213(1):169–178. doi: 10.1006/viro.1995.1557. [DOI] [PubMed] [Google Scholar]
- Weeks K. M., Crothers D. M. RNA binding assays for Tat-derived peptides: implications for specificity. Biochemistry. 1992 Oct 27;31(42):10281–10287. doi: 10.1021/bi00157a015. [DOI] [PubMed] [Google Scholar]
- Wengler G., Castle E. Analysis of structural properties which possibly are characteristic for the 3'-terminal sequence of the genome RNA of flaviviruses. J Gen Virol. 1986 Jun;67(Pt 6):1183–1188. doi: 10.1099/0022-1317-67-6-1183. [DOI] [PubMed] [Google Scholar]
- Wilusz J., Kurilla M. G., Keene J. D. A host protein (La) binds to a unique species of minus-sense leader RNA during replication of vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5827–5831. doi: 10.1073/pnas.80.19.5827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu W., Leibowitz J. L. A conserved motif at the 3' end of mouse hepatitis virus genomic RNA required for host protein binding and viral RNA replication. Virology. 1995 Dec 1;214(1):128–138. doi: 10.1006/viro.1995.9947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zuker M. Computer prediction of RNA structure. Methods Enzymol. 1989;180:262–288. doi: 10.1016/0076-6879(89)80106-5. [DOI] [PubMed] [Google Scholar]