Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Sep;71(9):6786–6795. doi: 10.1128/jvi.71.9.6786-6795.1997

Analysis of bovine herpesvirus 1 transcripts during a primary infection of trigeminal ganglia of cattle.

L M Schang 1, C Jones 1
PMCID: PMC191959  PMID: 9261403

Abstract

During an infection of nonneuronal cells, bovine herpesvirus 1 (BHV-1) gene expression proceeds in a well-defined cascade. Products of immediate-early (IE) genes are expressed first, and they activate expression of early (E) and late (L) genes. Although the same cascade is assumed to occur during an infection of neurons in trigeminal ganglia (TG) of cattle, no experimental data is available to support this hypothesis. Consequently, we analyzed BHV-1 gene expression in bovine TG at 1, 2, 4, 7, and 15 days postinfection (dpi). Infectious virus was detected in ocular swabs from 1 to 7 dpi but not 15 dpi. By reverse transcription (RT)-PCR, IE (bICP4), E (thymidine kinase, ribonucleotide reductase [RR]), L (glycoprotein C, and alpha trans-inducing factor), and dual-kinetic (bICP0 and bICP22) transcripts were analyzed. When cDNA synthesis was primed with random hexamers, IE and E transcripts were detected at the same time. However, full-length and poly(A)+ (FL&P) RR or bICP22 RNAs were detected before FL&P IE RNAs. Furthermore, FL&P IE transcripts were not detected until viral DNA increased in TG. IE transcripts were detected before E or L RNAs when rabbit kidney cells were infected with a low multiplicity of infection and the same RT-PCR detection method was used. These studies suggested that expression of full-length and polyadenylated IE transcripts in trigeminal ganglia was not efficient compared to that of RR and bICP22 transcripts.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackermann M., Peterhans E., Wyler R. DNA of bovine herpesvirus type 1 in the trigeminal ganglia of latently infected calves. Am J Vet Res. 1982 Jan;43(1):36–40. [PubMed] [Google Scholar]
  2. Assouline J. G., Levin M. J., Major E. O., Forghani B., Straus S. E., Ostrove J. M. Varicella-zoster virus infection of human astrocytes, Schwann cells, and neurons. Virology. 1990 Dec;179(2):834–844. doi: 10.1016/0042-6822(90)90152-h. [DOI] [PubMed] [Google Scholar]
  3. Bello L. J., Whitbeck J. C., Lawrence W. C. Sequence and transcript analysis of the bovine herpesvirus 1 thymidine kinase locus. Virology. 1992 Aug;189(2):407–414. doi: 10.1016/0042-6822(92)90564-6. [DOI] [PubMed] [Google Scholar]
  4. Bohenzky R. A., Lagunoff M., Roizman B., Wagner E. K., Silverstein S. Two overlapping transcription units which extend across the L-S junction of herpes simplex virus type 1. J Virol. 1995 May;69(5):2889–2897. doi: 10.1128/jvi.69.5.2889-2897.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cai W., Schaffer P. A. A cellular function can enhance gene expression and plating efficiency of a mutant defective in the gene for ICP0, a transactivating protein of herpes simplex virus type 1. J Virol. 1991 Aug;65(8):4078–4090. doi: 10.1128/jvi.65.8.4078-4090.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carpenter D. E., Misra V. Sequences of the bovine herpesvirus 1 homologue of herpes simplex virus type-1 alpha-trans-inducing factor (UL48). Gene. 1992 Oct 1;119(2):259–263. doi: 10.1016/0378-1119(92)90280-3. [DOI] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Fitzpatrick D. R., Babiuk L. A., Zamb T. J. Nucleotide sequence of bovine herpesvirus type 1 glycoprotein gIII, a structural model for gIII as a new member of the immunoglobulin superfamily, and implications for the homologous glycoproteins of other herpesviruses. Virology. 1989 Nov;173(1):46–57. doi: 10.1016/0042-6822(89)90220-1. [DOI] [PubMed] [Google Scholar]
  9. Flores E. F., Osorio F. A., Zanella E. L., Kit S., Kit M. Efficacy of a deletion mutant bovine herpesvirus-1 (BHV-1) vaccine that allows serologic differentiation of vaccinated from naturally infected animals. J Vet Diagn Invest. 1993 Oct;5(4):534–540. doi: 10.1177/104063879300500406. [DOI] [PubMed] [Google Scholar]
  10. Fraefel C., Wirth U. V., Vogt B., Schwyzer M. Immediate-early transcription over covalently joined genome ends of bovine herpesvirus 1: the circ gene. J Virol. 1993 Mar;67(3):1328–1333. doi: 10.1128/jvi.67.3.1328-1333.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Galeota J. A., Flores E. F., Kit S., Kit M., Osorio F. A. A quantitative study of the efficacy of a deletion mutant bovine herpesvirus-1 differential vaccine in reducing the establishment of latency by wildtype virus. Vaccine. 1997 Feb;15(2):123–128. doi: 10.1016/s0264-410x(96)00165-x. [DOI] [PubMed] [Google Scholar]
  12. Hanson N., Henderson G., Jones C. The herpes simplex virus type 2 gene which encodes the large subunit of ribonucleotide reductase has unusual regulatory properties. Virus Res. 1994 Dec;34(3):265–280. doi: 10.1016/0168-1702(94)90127-9. [DOI] [PubMed] [Google Scholar]
  13. Hill J. M., Gebhardt B. M., Wen R., Bouterie A. M., Thompson H. W., O'Callaghan R. J., Halford W. P., Kaufman H. E. Quantitation of herpes simplex virus type 1 DNA and latency-associated transcripts in rabbit trigeminal ganglia demonstrates a stable reservoir of viral nucleic acids during latency. J Virol. 1996 May;70(5):3137–3141. doi: 10.1128/jvi.70.5.3137-3141.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ho D. Y., Mocarski E. S. Beta-galactosidase as a marker in the peripheral and neural tissues of the herpes simplex virus-infected mouse. Virology. 1988 Nov;167(1):279–283. doi: 10.1016/0042-6822(88)90079-7. [DOI] [PubMed] [Google Scholar]
  15. Holden V. R., Yalamanchili R. R., Harty R. N., O'Callaghan D. J. ICP22 homolog of equine herpesvirus 1: expression from early and late promoters. J Virol. 1992 Feb;66(2):664–673. doi: 10.1128/jvi.66.2.664-673.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Homan E. J., Easterday B. C. Experimental latent and recrudescent bovine herpesvirus-1 infections in calves. Am J Vet Res. 1983 Feb;44(2):309–313. [PubMed] [Google Scholar]
  17. Hossain A., Schang L. M., Jones C. Identification of gene products encoded by the latency-related gene of bovine herpesvirus 1. J Virol. 1995 Sep;69(9):5345–5352. doi: 10.1128/jvi.69.9.5345-5352.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Katz J. P., Bodin E. T., Coen D. M. Quantitative polymerase chain reaction analysis of herpes simplex virus DNA in ganglia of mice infected with replication-incompetent mutants. J Virol. 1990 Sep;64(9):4288–4295. doi: 10.1128/jvi.64.9.4288-4295.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kemp L. M., Dent C. L., Latchman D. S. Octamer motif mediates transcriptional repression of HSV immediate-early genes and octamer-containing cellular promoters in neuronal cells. Neuron. 1990 Feb;4(2):215–222. doi: 10.1016/0896-6273(90)90096-x. [DOI] [PubMed] [Google Scholar]
  20. Kosz-Vnenchak M., Coen D. M., Knipe D. M. Restricted expression of herpes simplex virus lytic genes during establishment of latent infection by thymidine kinase-negative mutant viruses. J Virol. 1990 Nov;64(11):5396–5402. doi: 10.1128/jvi.64.11.5396-5402.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kosz-Vnenchak M., Jacobson J., Coen D. M., Knipe D. M. Evidence for a novel regulatory pathway for herpes simplex virus gene expression in trigeminal ganglion neurons. J Virol. 1993 Sep;67(9):5383–5393. doi: 10.1128/jvi.67.9.5383-5393.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lagunoff M., Roizman B. Expression of a herpes simplex virus 1 open reading frame antisense to the gamma(1)34.5 gene and transcribed by an RNA 3' coterminal with the unspliced latency-associated transcript. J Virol. 1994 Sep;68(9):6021–6028. doi: 10.1128/jvi.68.9.6021-6028.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lillycrop K. A., Dent C. L., Wheatley S. C., Beech M. N., Ninkina N. N., Wood J. N., Latchman D. S. The octamer-binding protein Oct-2 represses HSV immediate-early genes in cell lines derived from latently infectable sensory neurons. Neuron. 1991 Sep;7(3):381–390. doi: 10.1016/0896-6273(91)90290-g. [DOI] [PubMed] [Google Scholar]
  24. Lillycrop K. A., Howard M. K., Estridge J. K., Latchman D. S. Inhibition of herpes simplex virus infection by ectopic expression of neuronal splice variants of the Oct-2 transcription factor. Nucleic Acids Res. 1994 Mar 11;22(5):815–820. doi: 10.1093/nar/22.5.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Margolis T. P., Sedarati F., Dobson A. T., Feldman L. T., Stevens J. G. Pathways of viral gene expression during acute neuronal infection with HSV-1. Virology. 1992 Jul;189(1):150–160. doi: 10.1016/0042-6822(92)90690-q. [DOI] [PubMed] [Google Scholar]
  26. Misra V., Bratanich A. C., Carpenter D., O'Hare P. Protein and DNA elements involved in transactivation of the promoter of the bovine herpesvirus (BHV) 1 IE-1 transcription unit by the BHV alpha gene trans-inducing factor. J Virol. 1994 Aug;68(8):4898–4909. doi: 10.1128/jvi.68.8.4898-4909.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Misra V., Walker S., Hayes S., O'Hare P. The bovine herpesvirus alpha gene trans-inducing factor activates transcription by mechanisms different from those of its herpes simplex virus type 1 counterpart VP16. J Virol. 1995 Sep;69(9):5209–5216. doi: 10.1128/jvi.69.9.5209-5216.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mitchell W. J. Neurons differentially control expression of a herpes simplex virus type 1 immediate-early promoter in transgenic mice. J Virol. 1995 Dec;69(12):7942–7950. doi: 10.1128/jvi.69.12.7942-7950.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mittal S. K., Field H. J. Analysis of the bovine herpesvirus type 1 thymidine kinase (TK) gene from wild-type virus and TK-deficient mutants. J Gen Virol. 1989 Apr;70(Pt 4):901–918. doi: 10.1099/0022-1317-70-4-901. [DOI] [PubMed] [Google Scholar]
  30. Ralph W. M., Jr, Cabatingan M. S., Schaffer P. A. Induction of herpes simplex virus type 1 immediate-early gene expression by a cellular activity expressed in Vero and NB41A3 cells after growth arrest-release. J Virol. 1994 Nov;68(11):6871–6882. doi: 10.1128/jvi.68.11.6871-6882.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ramakrishnan R., Fink D. J., Jiang G., Desai P., Glorioso J. C., Levine M. Competitive quantitative PCR analysis of herpes simplex virus type 1 DNA and latency-associated transcript RNA in latently infected cells of the rat brain. J Virol. 1994 Mar;68(3):1864–1873. doi: 10.1128/jvi.68.3.1864-1873.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rice S. A., Long M. C., Lam V., Schaffer P. A., Spencer C. A. Herpes simplex virus immediate-early protein ICP22 is required for viral modification of host RNA polymerase II and establishment of the normal viral transcription program. J Virol. 1995 Sep;69(9):5550–5559. doi: 10.1128/jvi.69.9.5550-5559.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rock D. L., Beam S. L., Mayfield J. E. Mapping bovine herpesvirus type 1 latency-related RNA in trigeminal ganglia of latently infected rabbits. J Virol. 1987 Dec;61(12):3827–3831. doi: 10.1128/jvi.61.12.3827-3831.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roizmann B., Desrosiers R. C., Fleckenstein B., Lopez C., Minson A. C., Studdert M. J. The family Herpesviridae: an update. The Herpesvirus Study Group of the International Committee on Taxonomy of Viruses. Arch Virol. 1992;123(3-4):425–449. doi: 10.1007/BF01317276. [DOI] [PubMed] [Google Scholar]
  35. Schang L. M., Hossain A., Jones C. The latency-related gene of bovine herpesvirus 1 encodes a product which inhibits cell cycle progression. J Virol. 1996 Jun;70(6):3807–3814. doi: 10.1128/jvi.70.6.3807-3814.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schang L. M., Osorio F. A. Quantitation of latency established by attenuated strains of Pseudorabies (Aujeszky's disease) virus. J Virol Methods. 1994 Dec;50(1-3):269–280. doi: 10.1016/0166-0934(94)90183-x. [DOI] [PubMed] [Google Scholar]
  37. Schwyzer M., Vlcek C., Menekse O., Fraefel C., Paces V. Promoter, spliced leader, and coding sequence for BICP4, the largest of the immediate-early proteins of bovine herpesvirus 1. Virology. 1993 Nov;197(1):349–357. doi: 10.1006/viro.1993.1596. [DOI] [PubMed] [Google Scholar]
  38. Schwyzer M., Wirth U. V., Vogt B., Fraefel C. BICP22 of bovine herpesvirus 1 is encoded by a spliced 1.7 kb RNA which exhibits immediate early and late transcription kinetics. J Gen Virol. 1994 Jul;75(Pt 7):1703–1711. doi: 10.1099/0022-1317-75-7-1703. [DOI] [PubMed] [Google Scholar]
  39. Seal B. S., Whetstone C. A., Zamb T. J., Bello L. J., Lawrence W. C. Relationship of bovine herpesvirus 1 immediate-early, early, and late gene expression to host cellular gene transcription. Virology. 1992 May;188(1):152–159. doi: 10.1016/0042-6822(92)90744-a. [DOI] [PubMed] [Google Scholar]
  40. Sears A. E., Halliburton I. W., Meignier B., Silver S., Roizman B. Herpes simplex virus 1 mutant deleted in the alpha 22 gene: growth and gene expression in permissive and restrictive cells and establishment of latency in mice. J Virol. 1985 Aug;55(2):338–346. doi: 10.1128/jvi.55.2.338-346.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shin E. K., Tevosian S. G., Yee A. S. The N-terminal region of E2F-1 is required for transcriptional activation of a new class of target promoter. J Biol Chem. 1996 May 24;271(21):12261–12268. doi: 10.1074/jbc.271.21.12261. [DOI] [PubMed] [Google Scholar]
  42. Simard C., Bastien N., Trudel M. Sequencing and 5'- and 3'-end transcript mapping of the gene encoding the small subunit of ribonucleotide reductase from bovine herpesvirus type-1. Virology. 1992 Oct;190(2):689–701. doi: 10.1016/0042-6822(92)90907-7. [DOI] [PubMed] [Google Scholar]
  43. Simard C., Langlois I., Styger D., Vogt B., Vlcek C., Chalifour A., Trudel M., Schwyzer M. Sequence analysis of the UL39, UL38, and UL37 homologues of bovine herpesvirus 1 and expression studies of UL40 and UL39, the subunits of ribonucleotide reductase. Virology. 1995 Oct 1;212(2):734–740. doi: 10.1006/viro.1995.1533. [DOI] [PubMed] [Google Scholar]
  44. Speck P. G., Simmons A. Divergent molecular pathways of productive and latent infection with a virulent strain of herpes simplex virus type 1. J Virol. 1991 Aug;65(8):4001–4005. doi: 10.1128/jvi.65.8.4001-4005.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wirth U. V., Fraefel C., Vogt B., Vlcek C., Paces V., Schwyzer M. Immediate-early RNA 2.9 and early RNA 2.6 of bovine herpesvirus 1 are 3' coterminal and encode a putative zinc finger transactivator protein. J Virol. 1992 May;66(5):2763–2772. doi: 10.1128/jvi.66.5.2763-2772.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wirth U. V., Gunkel K., Engels M., Schwyzer M. Spatial and temporal distribution of bovine herpesvirus 1 transcripts. J Virol. 1989 Nov;63(11):4882–4889. doi: 10.1128/jvi.63.11.4882-4889.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wymer J. P., Aprhys C. M., Chung T. D., Feng C. P., Kulka M., Aurelian L. Immediate early and functional AP-1 cis-response elements are involved in the transcriptional regulation of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). Virus Res. 1992 May;23(3):253–270. doi: 10.1016/0168-1702(92)90112-m. [DOI] [PubMed] [Google Scholar]
  48. Yao F., Schaffer P. A. An activity specified by the osteosarcoma line U2OS can substitute functionally for ICP0, a major regulatory protein of herpes simplex virus type 1. J Virol. 1995 Oct;69(10):6249–6258. doi: 10.1128/jvi.69.10.6249-6258.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Yeh L., Schaffer P. A. A novel class of transcripts expressed with late kinetics in the absence of ICP4 spans the junction between the long and short segments of the herpes simplex virus type 1 genome. J Virol. 1993 Dec;67(12):7373–7382. doi: 10.1128/jvi.67.12.7373-7382.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zhang G., Leader D. P. The structure of the pseudorabies virus genome at the end of the inverted repeat sequences proximal to the junction with the short unique region. J Gen Virol. 1990 Oct;71(Pt 10):2433–2441. doi: 10.1099/0022-1317-71-10-2433. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES