Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Sep;71(9):6956–6966. doi: 10.1128/jvi.71.9.6956-6966.1997

Cell-type-specific separate regulation of the E6 and E7 promoters of human papillomavirus type 6a by the viral transcription factor E2.

B Rapp 1, A Pawellek 1, F Kraetzer 1, M Schaefer 1, C May 1, K Purdie 1, K Grassmann 1, T Iftner 1
PMCID: PMC191980  PMID: 9261424

Abstract

Gene expression of human papillomaviruses (HPV) is tightly controlled by cellular factors and by the virally encoded E2 protein through binding to distinct sites within the regulatory noncoding region. While for the high-risk genital papillomaviruses a single promoter drives the expression of all early genes, a second promoter present in the E6 open reading frame of the low-risk HPV type 6 (HPV6) would allow an independent regulation of E6 and E7 oncogene expression. In this report, we provide the first evidence that E2 regulates both early promoters of HPV6 separately and we show that promoter usage as well as E2 regulation is cell type dependent. Among the different epithelial cell lines tested, only RTS3b cells allowed an expression pattern similar to that observed in naturally infected benign condylomas. While the E6 promoter was repressed by E2 to 50% of its basal activity, the E7 promoter was simultaneously stimulated up to fivefold. Activation of the E7 promoter was mediated predominantly by the binding of E2 to the most promoter-distal E2 binding site. Repression of the E6 promoter depended on the presence of two intact promoter-proximal binding sites. Mutation of both of these repressor binding sites reversed the effect of E2 on the E6 promoter from repression to activation. In contrast, in HT3 cells we observed an E2-mediated activation of the E6 promoter in the context of the wild-type noncoding region. This indicated that repression of the E6 promoter by binding of E2 to both promoter-proximal binding sites did not function in the cellular environment provided by HT3 cells. These data suggest that the separate regulation of the E6 and E7 promoters of HPV6 is mediated through successive occupation of binding sites with different affinities for E2 depending on the intracellular concentration of E2 and on the cellular environment provided by the infected cell.

Full Text

The Full Text of this article is available as a PDF (523.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauknecht T., Jundt F., Herr I., Oehler T., Delius H., Shi Y., Angel P., Zur Hausen H. A switch region determines the cell type-specific positive or negative action of YY1 on the activity of the human papillomavirus type 18 promoter. J Virol. 1995 Jan;69(1):1–12. doi: 10.1128/jvi.69.1.1-12.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bercovich J. A., Centeno C. R., Aguilar O. G., Grinstein S., Kahn T. Presence and integration of human papillomavirus type 6 in a tonsillar carcinoma. J Gen Virol. 1991 Oct;72(Pt 10):2569–2572. doi: 10.1099/0022-1317-72-10-2569. [DOI] [PubMed] [Google Scholar]
  3. Boshart M., zur Hausen H. Human papillomaviruses in Buschke-Löwenstein tumors: physical state of the DNA and identification of a tandem duplication in the noncoding region of a human papillomavirus 6 subtype. J Virol. 1986 Jun;58(3):963–966. doi: 10.1128/jvi.58.3.963-966.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brandsma J. L. Animal models of human-papillomavirus-associated oncogenesis. Intervirology. 1994;37(3-4):189–200. doi: 10.1159/000150377. [DOI] [PubMed] [Google Scholar]
  5. Böhm S., Wilczynski S. P., Pfister H., Iftner T. The predominant mRNA class in HPV16-infected genital neoplasias does not encode the E6 or the E7 protein. Int J Cancer. 1993 Nov 11;55(5):791–798. doi: 10.1002/ijc.2910550517. [DOI] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Crum C. P., Nuovo G., Friedman D., Silverstein S. J. Accumulation of RNA homologous to human papillomavirus type 16 open reading frames in genital precancers. J Virol. 1988 Jan;62(1):84–90. doi: 10.1128/jvi.62.1.84-90.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Demeret C., Yaniv M., Thierry F. The E2 transcriptional repressor can compensate for Sp1 activation of the human papillomavirus type 18 early promoter. J Virol. 1994 Nov;68(11):7075–7082. doi: 10.1128/jvi.68.11.7075-7082.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DiLorenzo T. P., Steinberg B. M. Differential regulation of human papillomavirus type 6 and 11 early promoters in cultured cells derived from laryngeal papillomas. J Virol. 1995 Nov;69(11):6865–6872. doi: 10.1128/jvi.69.11.6865-6872.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dong G., Broker T. R., Chow L. T. Human papillomavirus type 11 E2 proteins repress the homologous E6 promoter by interfering with the binding of host transcription factors to adjacent elements. J Virol. 1994 Feb;68(2):1115–1127. doi: 10.1128/jvi.68.2.1115-1127.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dong X. P., Stubenrauch F., Beyer-Finkler E., Pfister H. Prevalence of deletions of YY1-binding sites in episomal HPV 16 DNA from cervical cancers. Int J Cancer. 1994 Sep 15;58(6):803–808. doi: 10.1002/ijc.2910580609. [DOI] [PubMed] [Google Scholar]
  12. Dürst M., Bosch F. X., Glitz D., Schneider A., zur Hausen H. Inverse relationship between human papillomavirus (HPV) type 16 early gene expression and cell differentiation in nude mouse epithelial cysts and tumors induced by HPV-positive human cell lines. J Virol. 1991 Feb;65(2):796–804. doi: 10.1128/jvi.65.2.796-804.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dürst M., Glitz D., Schneider A., zur Hausen H. Human papillomavirus type 16 (HPV 16) gene expression and DNA replication in cervical neoplasia: analysis by in situ hybridization. Virology. 1992 Jul;189(1):132–140. doi: 10.1016/0042-6822(92)90688-l. [DOI] [PubMed] [Google Scholar]
  14. Farr A., Wang H., Kasher M. S., Roman A. Relative enhancer activity and transforming potential of authentic human papillomavirus type 6 genomes from benign and malignant lesions. J Gen Virol. 1991 Mar;72(Pt 3):519–526. doi: 10.1099/0022-1317-72-3-519. [DOI] [PubMed] [Google Scholar]
  15. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  17. Grassmann K., Rapp B., Maschek H., Petry K. U., Iftner T. Identification of a differentiation-inducible promoter in the E7 open reading frame of human papillomavirus type 16 (HPV-16) in raft cultures of a new cell line containing high copy numbers of episomal HPV-16 DNA. J Virol. 1996 Apr;70(4):2339–2349. doi: 10.1128/jvi.70.4.2339-2349.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Grassmann K., Wilczynski S. P., Cook N., Rapp B., Iftner T. HPV6 variants from malignant tumors with sequence alterations in the regulatory region do not reveal differences in the activities of the oncogene promoters but do contain amino acid exchanges in the E6 and E7 proteins. Virology. 1996 Sep 1;223(1):185–197. doi: 10.1006/viro.1996.0467. [DOI] [PubMed] [Google Scholar]
  19. Halbert C. L., Demers G. W., Galloway D. A. The E6 and E7 genes of human papillomavirus type 6 have weak immortalizing activity in human epithelial cells. J Virol. 1992 Apr;66(4):2125–2134. doi: 10.1128/jvi.66.4.2125-2134.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Higgins G. D., Uzelin D. M., Phillips G. E., McEvoy P., Marin R., Burrell C. J. Transcription patterns of human papillomavirus type 16 in genital intraepithelial neoplasia: evidence for promoter usage within the E7 open reading frame during epithelial differentiation. J Gen Virol. 1992 Aug;73(Pt 8):2047–2057. doi: 10.1099/0022-1317-73-8-2047. [DOI] [PubMed] [Google Scholar]
  21. Higuchi R., Krummel B., Saiki R. K. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 1988 Aug 11;16(15):7351–7367. doi: 10.1093/nar/16.15.7351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hofmann K. J., Cook J. C., Joyce J. G., Brown D. R., Schultz L. D., George H. A., Rosolowsky M., Fife K. H., Jansen K. U. Sequence determination of human papillomavirus type 6a and assembly of virus-like particles in Saccharomyces cerevisiae. Virology. 1995 Jun 1;209(2):506–518. doi: 10.1006/viro.1995.1283. [DOI] [PubMed] [Google Scholar]
  23. Iftner T., Bierfelder S., Csapo Z., Pfister H. Involvement of human papillomavirus type 8 genes E6 and E7 in transformation and replication. J Virol. 1988 Oct;62(10):3655–3661. doi: 10.1128/jvi.62.10.3655-3661.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Iftner T., Oft M., Böhm S., Wilczynski S. P., Pfister H. Transcription of the E6 and E7 genes of human papillomavirus type 6 in anogenital condylomata is restricted to undifferentiated cell layers of the epithelium. J Virol. 1992 Aug;66(8):4639–4646. doi: 10.1128/jvi.66.8.4639-4646.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jackson M. E., Campo M. S. Both viral E2 protein and the cellular factor PEBP2 regulate transcription via E2 consensus sites within the bovine papillomavirus type 4 long control region. J Virol. 1995 Oct;69(10):6038–6046. doi: 10.1128/jvi.69.10.6038-6046.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kasher M. S., Roman A. Characterization of human papillomavirus type 6b DNA isolated from an invasive squamous carcinoma of the vulva. Virology. 1988 Jul;165(1):225–233. doi: 10.1016/0042-6822(88)90676-9. [DOI] [PubMed] [Google Scholar]
  27. Kitasato H., Delius H., zur Hausen H., Sorger K., Rösl F., de Villiers E. M. Sequence rearrangements in the upstream regulatory region of human papillomavirus type 6: are these involved in malignant transition? J Gen Virol. 1994 May;75(Pt 5):1157–1162. doi: 10.1099/0022-1317-75-5-1157. [DOI] [PubMed] [Google Scholar]
  28. Kulke R., Gross G. E., Pfister H. Duplication of enhancer sequences in human papillomavirus 6 from condylomas of the mamilla. Virology. 1989 Nov;173(1):284–290. doi: 10.1016/0042-6822(89)90245-6. [DOI] [PubMed] [Google Scholar]
  29. Li R., Knight J., Bream G., Stenlund A., Botchan M. Specific recognition nucleotides and their DNA context determine the affinity of E2 protein for 17 binding sites in the BPV-1 genome. Genes Dev. 1989 Apr;3(4):510–526. doi: 10.1101/gad.3.4.510. [DOI] [PubMed] [Google Scholar]
  30. Lorincz A. T., Reid R., Jenson A. B., Greenberg M. D., Lancaster W., Kurman R. J. Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types. Obstet Gynecol. 1992 Mar;79(3):328–337. doi: 10.1097/00006250-199203000-00002. [DOI] [PubMed] [Google Scholar]
  31. May M., Dong X. P., Beyer-Finkler E., Stubenrauch F., Fuchs P. G., Pfister H. The E6/E7 promoter of extrachromosomal HPV16 DNA in cervical cancers escapes from cellular repression by mutation of target sequences for YY1. EMBO J. 1994 Mar 15;13(6):1460–1466. doi: 10.1002/j.1460-2075.1994.tb06400.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. McCance D. J., Kopan R., Fuchs E., Laimins L. A. Human papillomavirus type 16 alters human epithelial cell differentiation in vitro. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7169–7173. doi: 10.1073/pnas.85.19.7169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mevorach R. A., Cos L. R., di Sant'Agnese P. A., Stoler M. Human papillomavirus type 6 in grade I transitional cell carcinoma of the urethra. J Urol. 1990 Jan;143(1):126–128. doi: 10.1016/s0022-5347(17)39888-9. [DOI] [PubMed] [Google Scholar]
  34. Oft M., Böhm S., Wilczynski S. P., Iftner T. Expression of the different viral mRNAs of human papilloma virus 6 in a squamous-cell carcinoma of the bladder and the cervix. Int J Cancer. 1993 Apr 1;53(6):924–931. doi: 10.1002/ijc.2910530610. [DOI] [PubMed] [Google Scholar]
  35. Okagaki T., Clark B. A., Zachow K. R., Twiggs L. B., Ostrow R. S., Pass F., Faras A. J. Presence of human papillomavirus in verrucous carcinoma (Ackerman) of the vagina. Immunocytochemical, ultrastructural, and DNA hybridization studies. Arch Pathol Lab Med. 1984 Jul;108(7):567–570. [PubMed] [Google Scholar]
  36. Purdie K. J., Sexton C. J., Proby C. M., Glover M. T., Williams A. T., Stables J. N., Leigh I. M. Malignant transformation of cutaneous lesions in renal allograft patients: a role for human papillomavirus. Cancer Res. 1993 Nov 1;53(21):5328–5333. [PubMed] [Google Scholar]
  37. Rando R. F., Groff D. E., Chirikjian J. G., Lancaster W. D. Isolation and characterization of a novel human papillomavirus type 6 DNA from an invasive vulvar carcinoma. J Virol. 1986 Jan;57(1):353–356. doi: 10.1128/jvi.57.1.353-356.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rübben A., Beaudenon S., Favre M., Schmitz W., Spelten B., Grussendorf-Conen E. I. Rearrangements of the upstream regulatory region of human papillomavirus type 6 can be found in both Buschke-Löwenstein tumours and in condylomata acuminata. J Gen Virol. 1992 Dec;73(Pt 12):3147–3153. doi: 10.1099/0022-1317-73-12-3147. [DOI] [PubMed] [Google Scholar]
  39. Schmitt A., Harry J. B., Rapp B., Wettstein F. O., Iftner T. Comparison of the properties of the E6 and E7 genes of low- and high-risk cutaneous papillomaviruses reveals strongly transforming and high Rb-binding activity for the E7 protein of the low-risk human papillomavirus type 1. J Virol. 1994 Nov;68(11):7051–7059. doi: 10.1128/jvi.68.11.7051-7059.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schwarz E., Freese U. K., Gissmann L., Mayer W., Roggenbuck B., Stremlau A., zur Hausen H. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 1985 Mar 7;314(6006):111–114. doi: 10.1038/314111a0. [DOI] [PubMed] [Google Scholar]
  41. Smotkin D., Prokoph H., Wettstein F. O. Oncogenic and nononcogenic human genital papillomaviruses generate the E7 mRNA by different mechanisms. J Virol. 1989 Mar;63(3):1441–1447. doi: 10.1128/jvi.63.3.1441-1447.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Smotkin D., Wettstein F. O. Transcription of human papillomavirus type 16 early genes in a cervical cancer and a cancer-derived cell line and identification of the E7 protein. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4680–4684. doi: 10.1073/pnas.83.13.4680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Steger G., Corbach S. Dose-dependent regulation of the early promoter of human papillomavirus type 18 by the viral E2 protein. J Virol. 1997 Jan;71(1):50–58. doi: 10.1128/jvi.71.1.50-58.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Stoler M. H., Wolinsky S. M., Whitbeck A., Broker T. R., Chow L. T. Differentiation-linked human papillomavirus types 6 and 11 transcription in genital condylomata revealed by in situ hybridization with message-specific RNA probes. Virology. 1989 Sep;172(1):331–340. doi: 10.1016/0042-6822(89)90135-9. [DOI] [PubMed] [Google Scholar]
  45. Tan S. H., Leong L. E., Walker P. A., Bernard H. U. The human papillomavirus type 16 E2 transcription factor binds with low cooperativity to two flanking sites and represses the E6 promoter through displacement of Sp1 and TFIID. J Virol. 1994 Oct;68(10):6411–6420. doi: 10.1128/jvi.68.10.6411-6420.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Turek L. P. The structure, function, and regulation of papillomaviral genes in infection and cervical cancer. Adv Virus Res. 1994;44:305–356. doi: 10.1016/s0065-3527(08)60332-2. [DOI] [PubMed] [Google Scholar]
  47. Vousden K. H. Regulation of the cell cycle by viral oncoproteins. Semin Cancer Biol. 1995 Apr;6(2):109–116. doi: 10.1006/scbi.1995.0014. [DOI] [PubMed] [Google Scholar]
  48. Westin G., Gerster T., Müller M. M., Schaffner G., Schaffner W. OVEC, a versatile system to study transcription in mammalian cells and cell-free extracts. Nucleic Acids Res. 1987 Sep 11;15(17):6787–6798. doi: 10.1093/nar/15.17.6787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wilczynski S. P., Oft M., Cook N., Liao S. Y., Iftner T. Human papillomavirus type 6 in squamous cell carcinoma of the bladder and cervix. Hum Pathol. 1993 Jan;24(1):96–102. doi: 10.1016/0046-8177(93)90068-r. [DOI] [PubMed] [Google Scholar]
  50. Wu T. C., Mounts P. Transcriptional regulatory elements in the noncoding region of human papillomavirus type 6. J Virol. 1988 Dec;62(12):4722–4729. doi: 10.1128/jvi.62.12.4722-4729.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zeltner R., Borenstein L. A., Wettstein F. O., Iftner T. Changes in RNA expression pattern during the malignant progression of cottontail rabbit papillomavirus-induced tumors in rabbits. J Virol. 1994 Jun;68(6):3620–3630. doi: 10.1128/jvi.68.6.3620-3630.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. de Villiers E. M., Gissmann L., zur Hausen H. Molecular cloning of viral DNA from human genital warts. J Virol. 1981 Dec;40(3):932–935. doi: 10.1128/jvi.40.3.932-935.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. zur Hausen H. Molecular pathogenesis of cancer of the cervix and its causation by specific human papillomavirus types. Curr Top Microbiol Immunol. 1994;186:131–156. doi: 10.1007/978-3-642-78487-3_8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES