Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Sep;71(9):6990–6995. doi: 10.1128/jvi.71.9.6990-6995.1997

Multimerization of polyomavirus middle-T antigen.

M Senften 1, S Dilworth 1, K Ballmer-Hofer 1
PMCID: PMC191984  PMID: 9261428

Abstract

The oncogenic protein of polyomavirus, middle-T antigen, associated with cell membranes and interacts with a variety of cellular proteins involved in mitogenic signalling. Middle-T antigen may therefore mimic the function of cellular tyrosine kinase growth factor receptors, like the platelet-derived growth factor or epidermal growth factor receptor. Growth factor receptor signalling is initiated upon the binding of a ligand to the extracellular domain of the receptor. This results in activation of the intracellular tyrosine kinase domain of the receptor, followed by receptor phosphorylation, presumably as a consequence of dimerization of two receptor molecules. Similar to middle-T antigen, phosphorylation of growth factor receptors leads to recruitment of cellular signalling molecules downstream in the signalling cascade. In this study, we investigated whether middle-T antigen, similar to tyrosine kinase growth factor receptors, is able to form dimeric signalling complexes. We found that association with cellular membranes was a prerequisite for multimerization, most likely dimer formation. A chimeric middle-T antigen carrying the membrane-targeting sequence of the vesicular stomatitis virus G protein instead of the authentic polyomavirus sequence still dimerized. However, mutants of middle-T antigen unable to associate with 14-3-3 proteins, like d18 and S257A, did not form dimers but were still oncogenic. This indicates that both membrane association and binding of 14-3-3 are necessary for dimer formation of middle-T antigen but that only the former is essential for cell transformation.

Full Text

The Full Text of this article is available as a PDF (389.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aitken A. 14-3-3 proteins on the MAP. Trends Biochem Sci. 1995 Mar;20(3):95–97. doi: 10.1016/s0968-0004(00)88971-9. [DOI] [PubMed] [Google Scholar]
  2. Besser D., Urich M., Sakaue M., Messerschmitt A., Ballmer-Hofer K., Nagamine Y. Urokinase-type plasminogen activator gene regulation by polyomavirus middle-T antigen. Oncogene. 1995 Dec 7;11(11):2383–2391. [PubMed] [Google Scholar]
  3. Blechman J. M., Yarden Y. Structural aspects of receptor dimerization. c-kit as an example. Ann N Y Acad Sci. 1995 Sep 7;766:344–362. doi: 10.1111/j.1749-6632.1995.tb26685.x. [DOI] [PubMed] [Google Scholar]
  4. Brewster C. E., Glover H. R., Dilworth S. M. pp60c-src binding to polyomavirus middle T-antigen (MT) requires residues 185 to 210 of the MT sequence. J Virol. 1997 Jul;71(7):5512–5520. doi: 10.1128/jvi.71.7.5512-5520.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campbell K. S., Ogris E., Burke B., Su W., Auger K. R., Druker B. J., Schaffhausen B. S., Roberts T. M., Pallas D. C. Polyoma middle tumor antigen interacts with SHC protein via the NPTY (Asn-Pro-Thr-Tyr) motif in middle tumor antigen. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6344–6348. doi: 10.1073/pnas.91.14.6344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carmichael G., Schaffhausen B. S., Mandel G., Liang T. J., Benjamin T. L. Transformation by polyoma virus is drastically reduced by substitution of phenylalanine for tyrosine at residue 315 of middle-sized tumor antigen. Proc Natl Acad Sci U S A. 1984 Feb;81(3):679–683. doi: 10.1073/pnas.81.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cheng S. H., Espino P. C., Marshall J., Harvey R., Smith A. E. Stoichiometry of cellular and viral components in the polyomavirus middle-T antigen-tyrosine kinase complex. Mol Cell Biol. 1990 Oct;10(10):5569–5574. doi: 10.1128/mcb.10.10.5569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dilworth S. M., Brewster C. E., Jones M. D., Lanfrancone L., Pelicci G., Pelicci P. G. Transformation by polyoma virus middle T-antigen involves the binding and tyrosine phosphorylation of Shc. Nature. 1994 Jan 6;367(6458):87–90. doi: 10.1038/367087a0. [DOI] [PubMed] [Google Scholar]
  9. Dilworth S. M., Horner V. P. Novel monoclonal antibodies that differentiate between the binding of pp60c-src or protein phosphatase 2A by polyomavirus middle T antigen. J Virol. 1993 Apr;67(4):2235–2244. doi: 10.1128/jvi.67.4.2235-2244.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dilworth S. M. Polyoma virus middle T antigen: meddler or mimic? Trends Microbiol. 1995 Jan;3(1):31–35. doi: 10.1016/s0966-842x(00)88866-6. [DOI] [PubMed] [Google Scholar]
  11. Dunant N. M., Senften M., Ballmer-Hofer K. Polyomavirus middle-T antigen associates with the kinase domain of Src-related tyrosine kinases. J Virol. 1996 Mar;70(3):1323–1330. doi: 10.1128/jvi.70.3.1323-1330.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Garcea R. L., Benjamin T. L. Host range transforming gene of polyoma virus plays a role in virus assembly. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3613–3617. doi: 10.1073/pnas.80.12.3613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Griffin B. E., Ito Y., Novak U., Spurr N., Dilworth S., Smolar N., Pollack R., Smith K., Rifkin D. B. Early mutants of polyoma virus (dl8 and dl23) with altered transformation properties: is polyoma virus middle T antigen a transforming gene product? Cold Spring Harb Symp Quant Biol. 1980;44(Pt 1):271–283. doi: 10.1101/sqb.1980.044.01.031. [DOI] [PubMed] [Google Scholar]
  14. Heldin C. H. Dimerization of cell surface receptors in signal transduction. Cell. 1995 Jan 27;80(2):213–223. doi: 10.1016/0092-8674(95)90404-2. [DOI] [PubMed] [Google Scholar]
  15. Kaech S., Covic L., Wyss A., Ballmer-Hofer K. Association of p60c-src with polyoma virus middle-T antigen abrogating mitosis-specific activation. Nature. 1991 Apr 4;350(6317):431–433. doi: 10.1038/350431a0. [DOI] [PubMed] [Google Scholar]
  16. Li M., Garcea R. L. Identification of the threonine phosphorylation sites on the polyomavirus major capsid protein VP1: relationship to the activity of middle T antigen. J Virol. 1994 Jan;68(1):320–327. doi: 10.1128/jvi.68.1.320-327.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McCormick F. Activators and effectors of ras p21 proteins. Curr Opin Genet Dev. 1994 Feb;4(1):71–76. doi: 10.1016/0959-437x(94)90093-0. [DOI] [PubMed] [Google Scholar]
  18. Messerschmitt A., Disela C., Dilworth S., Marti A. G., Ballmer-Hofer K. Polyomavirus middle-T antigen lacking a membrane anchor sequence accumulates in the nucleus. J Gen Virol. 1996 Jan;77(Pt 1):17–26. doi: 10.1099/0022-1317-77-1-17. [DOI] [PubMed] [Google Scholar]
  19. Morrison D. 14-3-3: modulators of signaling proteins? Science. 1994 Oct 7;266(5182):56–57. doi: 10.1126/science.7939645. [DOI] [PubMed] [Google Scholar]
  20. Muslin A. J., Tanner J. W., Allen P. M., Shaw A. S. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell. 1996 Mar 22;84(6):889–897. doi: 10.1016/s0092-8674(00)81067-3. [DOI] [PubMed] [Google Scholar]
  21. Pallas D. C., Fu H., Haehnel L. C., Weller W., Collier R. J., Roberts T. M. Association of polyomavirus middle tumor antigen with 14-3-3 proteins. Science. 1994 Jul 22;265(5171):535–537. doi: 10.1126/science.8036498. [DOI] [PubMed] [Google Scholar]
  22. Pallas D. C., Shahrik L. K., Martin B. L., Jaspers S., Miller T. B., Brautigan D. L., Roberts T. M. Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell. 1990 Jan 12;60(1):167–176. doi: 10.1016/0092-8674(90)90726-u. [DOI] [PubMed] [Google Scholar]
  23. Pérez L., Paasinen A., Schnierle B., Käch S., Senften M., Ballmer-Hofer K. Mitosis-specific phosphorylation of polyomavirus middle-sized tumor antigen and its role during cell transformation. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8113–8117. doi: 10.1073/pnas.90.17.8113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pérez L., Urich M., Paasinen A., Senften M., Meili R., Ballmer-Hofer K. Domains in middle-T antigen that cooperate in polyomavirus-mediated oncogenic transformation. Virology. 1995 Apr 1;208(1):26–37. doi: 10.1006/viro.1995.1126. [DOI] [PubMed] [Google Scholar]
  25. Rozakis-Adcock M., McGlade J., Mbamalu G., Pelicci G., Daly R., Li W., Batzer A., Thomas S., Brugge J., Pelicci P. G. Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature. 1992 Dec 17;360(6405):689–692. doi: 10.1038/360689a0. [DOI] [PubMed] [Google Scholar]
  26. Srinivas S., Schönthal A., Eckhart W. Polyomavirus middle-sized tumor antigen modulates c-Jun phosphorylation and transcriptional activity. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10064–10068. doi: 10.1073/pnas.91.21.10064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Strauss M., Hering S., Lubbe L., Griffin B. E. Immortalization and transformation of human fibroblasts by regulated expression of polyoma virus T antigens. Oncogene. 1990 Aug;5(8):1223–1229. [PubMed] [Google Scholar]
  28. Su W., Liu W., Schaffhausen B. S., Roberts T. M. Association of Polyomavirus middle tumor antigen with phospholipase C-gamma 1. J Biol Chem. 1995 May 26;270(21):12331–12334. doi: 10.1074/jbc.270.21.12331. [DOI] [PubMed] [Google Scholar]
  29. Templeton D., Voronova A., Eckhart W. Construction and expression of a recombinant DNA gene encoding a polyomavirus middle-size tumor antigen with the carboxyl terminus of the vesicular stomatitis virus glycoprotein G. Mol Cell Biol. 1984 Feb;4(2):282–289. doi: 10.1128/mcb.4.2.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Treisman R., Novak U., Favaloro J., Kamen R. Transformation of rat cells by an altered polyoma virus genome expressing only the middle-T protein. Nature. 1981 Aug 13;292(5824):595–600. doi: 10.1038/292595a0. [DOI] [PubMed] [Google Scholar]
  31. Urich M., el Shemerly M. Y., Besser D., Nagamine Y., Ballmer-Hofer K. Activation and nuclear translocation of mitogen-activated protein kinases by polyomavirus middle-T or serum depend on phosphatidylinositol 3-kinase. J Biol Chem. 1995 Dec 8;270(49):29286–29292. doi: 10.1074/jbc.270.49.29286. [DOI] [PubMed] [Google Scholar]
  32. Walter G., Ruediger R., Slaughter C., Mumby M. Association of protein phosphatase 2A with polyoma virus medium tumor antigen. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2521–2525. doi: 10.1073/pnas.87.7.2521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Whitman M., Kaplan D. R., Schaffhausen B., Cantley L., Roberts T. M. Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature. 1985 May 16;315(6016):239–242. doi: 10.1038/315239a0. [DOI] [PubMed] [Google Scholar]
  34. Xiao B., Smerdon S. J., Jones D. H., Dodson G. G., Soneji Y., Aitken A., Gamblin S. J. Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways. Nature. 1995 Jul 13;376(6536):188–191. doi: 10.1038/376188a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES