Abstract
Previous in vitro analyses have shown that the human immunodeficiency virus type 1 (HIV-1) integrase uses either manganese or magnesium to assemble as a stable complex on the donor substrate and to catalyze strand transfer. We now demonstrate that subsequent to assembly, catalysis of both 3' end processing and strand transfer requires a divalent cation cofactor and that the divalent cation requirements for assembly and catalysis can be functionally distinguished based on the ability to utilize calcium and cobalt, respectively. The different divalent cation requirements manifest by these processes are exploited to uncouple assembly and catalysis, thus staging the reaction. Staged 3' end processing and strand transfer assays are then used in conjunction with exonuclease III protection analysis to investigate the effects of integrase inhibitors on each step in the reaction. Analysis of a series of related inhibitors demonstrates that these types of compounds affect assembly and not either catalytic process, therefore reconciling the apparent disparate results obtained for such inhibitors in assays using isolated preintegration complexes. These studies provide evidence for a distinct role of the divalent cation cofactor in assembly and catalysis and have implications for both the identification and characterization of integrase inhibitors.
Full Text
The Full Text of this article is available as a PDF (536.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brown P. O. Integration of retroviral DNA. Curr Top Microbiol Immunol. 1990;157:19–48. doi: 10.1007/978-3-642-75218-6_2. [DOI] [PubMed] [Google Scholar]
- Bukrinsky M. I., Sharova N., McDonald T. L., Pushkarskaya T., Tarpley W. G., Stevenson M. Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6125–6129. doi: 10.1073/pnas.90.13.6125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bushman F. D., Craigie R. Activities of human immunodeficiency virus (HIV) integration protein in vitro: specific cleavage and integration of HIV DNA. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1339–1343. doi: 10.1073/pnas.88.4.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carteau S., Mouscadet J. F., Goulaouic H., Subra F., Auclair C. Effect of topoisomerase inhibitors on the in vitro HIV DNA integration reaction. Biochem Biophys Res Commun. 1993 May 14;192(3):1409–1414. doi: 10.1006/bbrc.1993.1573. [DOI] [PubMed] [Google Scholar]
- Carteau S., Mouscadet J. F., Goulaouic H., Subra F., Auclair C. Inhibition of the in vitro integration of Moloney murine leukemia virus DNA by the DNA minor groove binder netropsin. Biochem Pharmacol. 1994 May 18;47(10):1821–1826. doi: 10.1016/0006-2952(94)90311-5. [DOI] [PubMed] [Google Scholar]
- Carteau S., Mouscadet J. F., Goulaouic H., Subra F., Auclair C. Inhibitory effect of the polyanionic drug suramin on the in vitro HIV DNA integration reaction. Arch Biochem Biophys. 1993 Sep;305(2):606–610. doi: 10.1006/abbi.1993.1468. [DOI] [PubMed] [Google Scholar]
- Carteau S., Mouscadet J. F., Goulaouic H., Subra F., Auclair C. Quantitative in vitro assay for human immunodeficiency virus deoxyribonucleic acid integration. Arch Biochem Biophys. 1993 Feb 1;300(2):756–760. doi: 10.1006/abbi.1993.1105. [DOI] [PubMed] [Google Scholar]
- Cushman M., Golebiewski W. M., Pommier Y., Mazumder A., Reymen D., De Clercq E., Graham L., Rice W. G. Cosalane analogues with enhanced potencies as inhibitors of HIV-1 protease and integrase. J Med Chem. 1995 Feb 3;38(3):443–452. doi: 10.1021/jm00003a007. [DOI] [PubMed] [Google Scholar]
- Cushman M., Sherman P. Inhibition of HIV-1 integration protein by aurintricarboxylic acid monomers, monomer analogs, and polymer fractions. Biochem Biophys Res Commun. 1992 May 29;185(1):85–90. doi: 10.1016/s0006-291x(05)80958-1. [DOI] [PubMed] [Google Scholar]
- Ellison V., Brown P. O. A stable complex between integrase and viral DNA ends mediates human immunodeficiency virus integration in vitro. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7316–7320. doi: 10.1073/pnas.91.15.7316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engelman A., Craigie R. Efficient magnesium-dependent human immunodeficiency virus type 1 integrase activity. J Virol. 1995 Sep;69(9):5908–5911. doi: 10.1128/jvi.69.9.5908-5911.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farnet C. M., Haseltine W. A. Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. J Virol. 1991 Apr;65(4):1910–1915. doi: 10.1128/jvi.65.4.1910-1915.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farnet C. M., Wang B., Lipford J. R., Bushman F. D. Differential inhibition of HIV-1 preintegration complexes and purified integrase protein by small molecules. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9742–9747. doi: 10.1073/pnas.93.18.9742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fesen M. R., Kohn K. W., Leteurtre F., Pommier Y. Inhibitors of human immunodeficiency virus integrase. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2399–2403. doi: 10.1073/pnas.90.6.2399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fesen M. R., Pommier Y., Leteurtre F., Hiroguchi S., Yung J., Kohn K. W. Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE) and related compounds. Biochem Pharmacol. 1994 Aug 3;48(3):595–608. doi: 10.1016/0006-2952(94)90291-7. [DOI] [PubMed] [Google Scholar]
- Goff S. P. Genetics of retroviral integration. Annu Rev Genet. 1992;26:527–544. doi: 10.1146/annurev.ge.26.120192.002523. [DOI] [PubMed] [Google Scholar]
- Grandgenett D. P., Vora A. C., Schiff R. D. A 32,000-dalton nucleic acid-binding protein from avian retravirus cores possesses DNA endonuclease activity. Virology. 1978 Aug;89(1):119–132. doi: 10.1016/0042-6822(78)90046-6. [DOI] [PubMed] [Google Scholar]
- Hazuda D. J., Hastings J. C., Wolfe A. L., Emini E. A. A novel assay for the DNA strand-transfer reaction of HIV-1 integrase. Nucleic Acids Res. 1994 Mar 25;22(6):1121–1122. doi: 10.1093/nar/22.6.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hazuda D., Felock P., Hastings J., Pramanik B., Wolfe A., Goodarzi G., Vora A., Brackmann K., Grandgenett D. Equivalent inhibition of half-site and full-site retroviral strand transfer reactions by structurally diverse compounds. J Virol. 1997 Jan;71(1):807–811. doi: 10.1128/jvi.71.1.807-811.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karageorgos L., Li P., Burrell C. Characterization of HIV replication complexes early after cell-to-cell infection. AIDS Res Hum Retroviruses. 1993 Sep;9(9):817–823. doi: 10.1089/aid.1993.9.817. [DOI] [PubMed] [Google Scholar]
- LaFemina R. L., Graham P. L., LeGrow K., Hastings J. C., Wolfe A., Young S. D., Emini E. A., Hazuda D. J. Inhibition of human immunodeficiency virus integrase by bis-catechols. Antimicrob Agents Chemother. 1995 Feb;39(2):320–324. doi: 10.1128/aac.39.2.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LaFemina R. L., Schneider C. L., Robbins H. L., Callahan P. L., LeGrow K., Roth E., Schleif W. A., Emini E. A. Requirement of active human immunodeficiency virus type 1 integrase enzyme for productive infection of human T-lymphoid cells. J Virol. 1992 Dec;66(12):7414–7419. doi: 10.1128/jvi.66.12.7414-7419.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee S. P., Kim H. G., Censullo M. L., Han M. K. Characterization of Mg(2+)-dependent 3'-processing activity for human immunodeficiency virus type 1 integrase in vitro: real-time kinetic studies using fluorescence resonance energy transfer. Biochemistry. 1995 Aug 15;34(32):10205–10214. doi: 10.1021/bi00032a014. [DOI] [PubMed] [Google Scholar]
- Lipford J. R., Worland S. T., Farnet C. M. Nucleotide binding by the HIV-1 integrase protein in vitro. J Acquir Immune Defic Syndr. 1994 Dec;7(12):1215–1223. [PubMed] [Google Scholar]
- Mazumder A., Cooney D., Agbaria R., Gupta M., Pommier Y. Inhibition of human immunodeficiency virus type 1 integrase by 3'-azido-3'-deoxythymidylate. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5771–5775. doi: 10.1073/pnas.91.13.5771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mazumder A., Gazit A., Levitzki A., Nicklaus M., Yung J., Kohlhagen G., Pommier Y. Effects of tyrphostins, protein kinase inhibitors, on human immunodeficiency virus type 1 integrase. Biochemistry. 1995 Nov 21;34(46):15111–15122. doi: 10.1021/bi00046a018. [DOI] [PubMed] [Google Scholar]
- Mazumder A., Gupta M., Perrin D. M., Sigman D. S., Rabinovitz M., Pommier Y. Inhibition of human immunodeficiency virus type 1 integrase by a hydrophobic cation: the phenanthroline-cuprous complex. AIDS Res Hum Retroviruses. 1995 Jan;11(1):115–125. doi: 10.1089/aid.1995.11.115. [DOI] [PubMed] [Google Scholar]
- Mazumder A., Raghavan K., Weinstein J., Kohn K. W., Pommier Y. Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochem Pharmacol. 1995 Apr 18;49(8):1165–1170. doi: 10.1016/0006-2952(95)98514-a. [DOI] [PubMed] [Google Scholar]
- Mizuuchi M., Baker T. A., Mizuuchi K. Assembly of the active form of the transposase-Mu DNA complex: a critical control point in Mu transposition. Cell. 1992 Jul 24;70(2):303–311. doi: 10.1016/0092-8674(92)90104-k. [DOI] [PubMed] [Google Scholar]
- Pemberton I. K., Buckle M., Buc H. The metal ion-induced cooperative binding of HIV-1 integrase to DNA exhibits a marked preference for Mn(II) rather than Mg(II). J Biol Chem. 1996 Jan 19;271(3):1498–1506. doi: 10.1074/jbc.271.3.1498. [DOI] [PubMed] [Google Scholar]
- Raghavan K., Buolamwini J. K., Fesen M. R., Pommier Y., Kohn K. W., Weinstein J. N. Three-dimensional quantitative structure-activity relationship (QSAR) of HIV integrase inhibitors: a comparative molecular field analysis (CoMFA) study. J Med Chem. 1995 Mar 17;38(6):890–897. doi: 10.1021/jm00006a006. [DOI] [PubMed] [Google Scholar]
- Rice P., Craigie R., Davies D. R. Retroviral integrases and their cousins. Curr Opin Struct Biol. 1996 Feb;6(1):76–83. doi: 10.1016/s0959-440x(96)80098-4. [DOI] [PubMed] [Google Scholar]
- Sherman P. A., Fyfe J. A. Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selective DNA cleaving activity. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5119–5123. doi: 10.1073/pnas.87.13.5119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stevenson M., Stanwick T. L., Dempsey M. P., Lamonica C. A. HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J. 1990 May;9(5):1551–1560. doi: 10.1002/j.1460-2075.1990.tb08274.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vincent K. A., Ellison V., Chow S. A., Brown P. O. Characterization of human immunodeficiency virus type 1 integrase expressed in Escherichia coli and analysis of variants with amino-terminal mutations. J Virol. 1993 Jan;67(1):425–437. doi: 10.1128/jvi.67.1.425-437.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vink C., Lutzke R. A., Plasterk R. H. Formation of a stable complex between the human immunodeficiency virus integrase protein and viral DNA. Nucleic Acids Res. 1994 Oct 11;22(20):4103–4110. doi: 10.1093/nar/22.20.4103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolfe A. L., Felock P. J., Hastings J. C., Blau C. U., Hazuda D. J. The role of manganese in promoting multimerization and assembly of human immunodeficiency virus type 1 integrase as a catalytically active complex on immobilized long terminal repeat substrates. J Virol. 1996 Mar;70(3):1424–1432. doi: 10.1128/jvi.70.3.1424-1432.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zack J. A., Arrigo S. J., Weitsman S. R., Go A. S., Haislip A., Chen I. S. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell. 1990 Apr 20;61(2):213–222. doi: 10.1016/0092-8674(90)90802-l. [DOI] [PubMed] [Google Scholar]