Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Sep;71(9):7030–7038. doi: 10.1128/jvi.71.9.7030-7038.1997

The protease and the assembly protein of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8).

A Unal 1, T R Pray 1, M Lagunoff 1, M W Pennington 1, D Ganem 1, C S Craik 1
PMCID: PMC191989  PMID: 9261433

Abstract

A genomic clone encoding the protease (Pr) and the assembly protein (AP) of Kaposi's sarcoma-associated herpesvirus (KSHV) (also called human herpesvirus 8) has been isolated and sequenced. As with other herpesviruses, the Pr and AP coding regions are present within a single long open reading frame. The mature KSHV Pr and AP polypeptides are predicted to contain 230 and 283 residues, respectively. The amino acid sequence of KSHV Pr has 56% identity with that of herpesvirus salmiri, the most similar virus by phylogenetic comparison. Pr is expressed in infected human cells as a late viral gene product, as suggested by RNA analysis of KSHV-infected BCBL-1 cells. Expression of the Pr domain in Escherichia coli yields an enzymatically active species, as determined by cleavage of synthetic peptide substrates, while an active-site mutant of this same domain yields minimal proteolytic activity. Sequence comparisons with human cytomegalovirus (HCMV) Pr permitted the identification of the catalytic residues, Ser114, His46, and His134, based on the known structure of the HCMV enzyme. The amino acid sequences of the release site of KSHV Pr (Tyr-Leu-Lys-Ala*Ser-Leu-Ile-Pro) and the maturation site (Arg-Leu-Glu-Ala*Ser-Ser-Arg-Ser) show that the extended substrate binding pocket differs from that of other members of the family. The conservation of amino acids known to be involved in the dimer interface region of HCMV Pr suggests that KSHV Pr assembles in a similar fashion. These features of the viral protease provide opportunities to develop specific inhibitors of its enzymatic activity.

Full Text

The Full Text of this article is available as a PDF (437.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht J. C., Nicholas J., Biller D., Cameron K. R., Biesinger B., Newman C., Wittmann S., Craxton M. A., Coleman H., Fleckenstein B. Primary structure of the herpesvirus saimiri genome. J Virol. 1992 Aug;66(8):5047–5058. doi: 10.1128/jvi.66.8.5047-5058.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ambroziak J. A., Blackbourn D. J., Herndier B. G., Glogau R. G., Gullett J. H., McDonald A. R., Lennette E. T., Levy J. A. Herpes-like sequences in HIV-infected and uninfected Kaposi's sarcoma patients. Science. 1995 Apr 28;268(5210):582–583. doi: 10.1126/science.7725108. [DOI] [PubMed] [Google Scholar]
  3. Babé L. M., Rosé J., Craik C. S. Synthetic "interface" peptides alter dimeric assembly of the HIV 1 and 2 proteases. Protein Sci. 1992 Oct;1(10):1244–1253. doi: 10.1002/pro.5560011003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beral V. Epidemiology of Kaposi's sarcoma. Cancer Surv. 1991;10:5–22. [PubMed] [Google Scholar]
  5. Beral V., Peterman T. A., Berkelman R. L., Jaffe H. W. Kaposi's sarcoma among persons with AIDS: a sexually transmitted infection? Lancet. 1990 Jan 20;335(8682):123–128. doi: 10.1016/0140-6736(90)90001-l. [DOI] [PubMed] [Google Scholar]
  6. Boshoff C., Schulz T. F., Kennedy M. M., Graham A. K., Fisher C., Thomas A., McGee J. O., Weiss R. A., O'Leary J. J. Kaposi's sarcoma-associated herpesvirus infects endothelial and spindle cells. Nat Med. 1995 Dec;1(12):1274–1278. doi: 10.1038/nm1295-1274. [DOI] [PubMed] [Google Scholar]
  7. Burck P. J., Berg D. H., Luk T. P., Sassmannshausen L. M., Wakulchik M., Smith D. P., Hsiung H. M., Becker G. W., Gibson W., Villarreal E. C. Human cytomegalovirus maturational proteinase: expression in Escherichia coli, purification, and enzymatic characterization by using peptide substrate mimics of natural cleavage sites. J Virol. 1994 May;68(5):2937–2946. doi: 10.1128/jvi.68.5.2937-2946.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chang Y., Cesarman E., Pessin M. S., Lee F., Culpepper J., Knowles D. M., Moore P. S. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science. 1994 Dec 16;266(5192):1865–1869. doi: 10.1126/science.7997879. [DOI] [PubMed] [Google Scholar]
  9. Chen P., Tsuge H., Almassy R. J., Gribskov C. L., Katoh S., Vanderpool D. L., Margosiak S. A., Pinko C., Matthews D. A., Kan C. C. Structure of the human cytomegalovirus protease catalytic domain reveals a novel serine protease fold and catalytic triad. Cell. 1996 Sep 6;86(5):835–843. doi: 10.1016/s0092-8674(00)80157-9. [DOI] [PubMed] [Google Scholar]
  10. Chuck S., Grant R. M., Katongole-Mbidde E., Conant M., Ganem D. Frequent presence of a novel herpesvirus genome in lesions of human immunodeficiency virus-negative Kaposi's sarcoma. J Infect Dis. 1996 Jan;173(1):248–251. doi: 10.1093/infdis/173.1.248. [DOI] [PubMed] [Google Scholar]
  11. Cole J. L. Characterization of human cytomegalovirus protease dimerization by analytical centrifugation. Biochemistry. 1996 Dec 3;35(48):15601–15610. doi: 10.1021/bi961719f. [DOI] [PubMed] [Google Scholar]
  12. Condra J. H., Schleif W. A., Blahy O. M., Gabryelski L. J., Graham D. J., Quintero J. C., Rhodes A., Robbins H. L., Roth E., Shivaprakash M. In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature. 1995 Apr 6;374(6522):569–571. doi: 10.1038/374569a0. [DOI] [PubMed] [Google Scholar]
  13. Cox G. A., Wakulchik M., Sassmannshausen L. M., Gibson W., Villarreal E. C. Human cytomegalovirus proteinase: candidate glutamic acid identified as third member of putative active-site triad. J Virol. 1995 Jul;69(7):4524–4528. doi: 10.1128/jvi.69.7.4524-4528.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Craik C. S., Roczniak S., Largman C., Rutter W. J. The catalytic role of the active site aspartic acid in serine proteases. Science. 1987 Aug 21;237(4817):909–913. doi: 10.1126/science.3303334. [DOI] [PubMed] [Google Scholar]
  15. Darke P. L., Cole J. L., Waxman L., Hall D. L., Sardana M. K., Kuo L. C. Active human cytomegalovirus protease is a dimer. J Biol Chem. 1996 Mar 29;271(13):7445–7449. doi: 10.1074/jbc.271.13.7445. [DOI] [PubMed] [Google Scholar]
  16. Desai P., Watkins S. C., Person S. The size and symmetry of B capsids of herpes simplex virus type 1 are determined by the gene products of the UL26 open reading frame. J Virol. 1994 Sep;68(9):5365–5374. doi: 10.1128/jvi.68.9.5365-5374.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. DiIanni C. L., Mapelli C., Drier D. A., Tsao J., Natarajan S., Riexinger D., Festin S. M., Bolgar M., Yamanaka G., Weinheimer S. P. In vitro activity of the herpes simplex virus type 1 protease with peptide substrates. J Biol Chem. 1993 Dec 5;268(34):25449–25454. [PubMed] [Google Scholar]
  18. DiIanni C. L., Stevens J. T., Bolgar M., O'Boyle D. R., 2nd, Weinheimer S. P., Colonno R. J. Identification of the serine residue at the active site of the herpes simplex virus type 1 protease. J Biol Chem. 1994 Apr 29;269(17):12672–12676. [PubMed] [Google Scholar]
  19. Ensoli B., Barillari G., Gallo R. C. Pathogenesis of AIDS-associated Kaposi's sarcoma. Hematol Oncol Clin North Am. 1991 Apr;5(2):281–295. [PubMed] [Google Scholar]
  20. Evnin L. B., Vásquez J. R., Craik C. S. Substrate specificity of trypsin investigated by using a genetic selection. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6659–6663. doi: 10.1073/pnas.87.17.6659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gao M., Matusick-Kumar L., Hurlburt W., DiTusa S. F., Newcomb W. W., Brown J. C., McCann P. J., 3rd, Deckman I., Colonno R. J. The protease of herpes simplex virus type 1 is essential for functional capsid formation and viral growth. J Virol. 1994 Jun;68(6):3702–3712. doi: 10.1128/jvi.68.6.3702-3712.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gao S. J., Kingsley L., Li M., Zheng W., Parravicini C., Ziegler J., Newton R., Rinaldo C. R., Saah A., Phair J. KSHV antibodies among Americans, Italians and Ugandans with and without Kaposi's sarcoma. Nat Med. 1996 Aug;2(8):925–928. doi: 10.1038/nm0896-925. [DOI] [PubMed] [Google Scholar]
  23. Gibson W., Marcy A. I., Comolli J. C., Lee J. Identification of precursor to cytomegalovirus capsid assembly protein and evidence that processing results in loss of its carboxy-terminal end. J Virol. 1990 Mar;64(3):1241–1249. doi: 10.1128/jvi.64.3.1241-1249.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gibson W., Roizman B. Proteins specified by herpes simplex virus. 8. Characterization and composition of multiple capsid forms of subtypes 1 and 2. J Virol. 1972 Nov;10(5):1044–1052. doi: 10.1128/jvi.10.5.1044-1052.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Gibson W. Structural and nonstructural proteins of strain Colburn cytomegalovirus. Virology. 1981 Jun;111(2):516–537. doi: 10.1016/0042-6822(81)90354-8. [DOI] [PubMed] [Google Scholar]
  26. Hall D. L., Darke P. L. Activation of the herpes simplex virus type 1 protease. J Biol Chem. 1995 Sep 29;270(39):22697–22700. doi: 10.1074/jbc.270.39.22697. [DOI] [PubMed] [Google Scholar]
  27. Holskin B. P., Bukhtiyarova M., Dunn B. M., Baur P., de Chastonay J., Pennington M. W. A continuous fluorescence-based assay of human cytomegalovirus protease using a peptide substrate. Anal Biochem. 1995 May 1;227(1):148–155. doi: 10.1006/abio.1995.1264. [DOI] [PubMed] [Google Scholar]
  28. Holwerda B. C., Wittwer A. J., Duffin K. L., Smith C., Toth M. V., Carr L. S., Wiegand R. C., Bryant M. L. Activity of two-chain recombinant human cytomegalovirus protease. J Biol Chem. 1994 Oct 14;269(41):25911–25915. [PubMed] [Google Scholar]
  29. Hong Z., Beaudet-Miller M., Durkin J., Zhang R., Kwong A. D. Identification of a minimal hydrophobic domain in the herpes simplex virus type 1 scaffolding protein which is required for interaction with the major capsid protein. J Virol. 1996 Jan;70(1):533–540. doi: 10.1128/jvi.70.1.533-540.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Huang Y. Q., Li J. J., Kaplan M. H., Poiesz B., Katabira E., Zhang W. C., Feiner D., Friedman-Kien A. E. Human herpesvirus-like nucleic acid in various forms of Kaposi's sarcoma. Lancet. 1995 Mar 25;345(8952):759–761. doi: 10.1016/s0140-6736(95)90641-x. [DOI] [PubMed] [Google Scholar]
  31. Irmiere A., Gibson W. Isolation of human cytomegalovirus intranuclear capsids, characterization of their protein constituents, and demonstration that the B-capsid assembly protein is also abundant in noninfectious enveloped particles. J Virol. 1985 Oct;56(1):277–283. doi: 10.1128/jvi.56.1.277-283.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Junker U., Escaich S., Plavec I., Baker J., McPhee F., Rose J. R., Craik C. S., Böhnlein E. Intracellular expression of human immunodeficiency virus type 1 (HIV-1) protease variants inhibits replication of wild-type and protease inhibitor-resistant HIV-1 strains in human T-cell lines. J Virol. 1996 Nov;70(11):7765–7772. doi: 10.1128/jvi.70.11.7765-7772.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kaiser E., Colescott R. L., Bossinger C. D., Cook P. I. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem. 1970 Apr;34(2):595–598. doi: 10.1016/0003-2697(70)90146-6. [DOI] [PubMed] [Google Scholar]
  34. Kedes D. H., Operskalski E., Busch M., Kohn R., Flood J., Ganem D. The seroepidemiology of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. Nat Med. 1996 Aug;2(8):918–924. doi: 10.1038/nm0896-918. [DOI] [PubMed] [Google Scholar]
  35. King D. S., Fields C. G., Fields G. B. A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis. Int J Pept Protein Res. 1990 Sep;36(3):255–266. doi: 10.1111/j.1399-3011.1990.tb00976.x. [DOI] [PubMed] [Google Scholar]
  36. Li L., Hoffman R. M. The feasibility of targeted selective gene therapy of the hair follicle. Nat Med. 1995 Jul;1(7):705–706. doi: 10.1038/nm0795-705. [DOI] [PubMed] [Google Scholar]
  37. Liu F. Y., Roizman B. The herpes simplex virus 1 gene encoding a protease also contains within its coding domain the gene encoding the more abundant substrate. J Virol. 1991 Oct;65(10):5149–5156. doi: 10.1128/jvi.65.10.5149-5156.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Liu F., Roizman B. Differentiation of multiple domains in the herpes simplex virus 1 protease encoded by the UL26 gene. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2076–2080. doi: 10.1073/pnas.89.6.2076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Loutsch J. M., Galvin N. J., Bryant M. L., Holwerda B. C. Cloning and sequence analysis of murine cytomegalovirus protease and capsid assembly protein genes. Biochem Biophys Res Commun. 1994 Aug 30;203(1):472–478. doi: 10.1006/bbrc.1994.2206. [DOI] [PubMed] [Google Scholar]
  40. McPhee F., Good A. C., Kuntz I. D., Craik C. S. Engineering human immunodeficiency virus 1 protease heterodimers as macromolecular inhibitors of viral maturation. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11477–11481. doi: 10.1073/pnas.93.21.11477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Moore P. S., Chang Y. Detection of herpesvirus-like DNA sequences in Kaposi's sarcoma in patients with and without HIV infection. N Engl J Med. 1995 May 4;332(18):1181–1185. doi: 10.1056/NEJM199505043321801. [DOI] [PubMed] [Google Scholar]
  42. Moore P. S., Gao S. J., Dominguez G., Cesarman E., Lungu O., Knowles D. M., Garber R., Pellett P. E., McGeoch D. J., Chang Y. Primary characterization of a herpesvirus agent associated with Kaposi's sarcomae. J Virol. 1996 Jan;70(1):549–558. doi: 10.1128/jvi.70.1.549-558.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Moore P. S., Kingsley L. A., Holmberg S. D., Spira T., Gupta P., Hoover D. R., Parry J. P., Conley L. J., Jaffe H. W., Chang Y. Kaposi's sarcoma-associated herpesvirus infection prior to onset of Kaposi's sarcoma. AIDS. 1996 Feb;10(2):175–180. doi: 10.1097/00002030-199602000-00007. [DOI] [PubMed] [Google Scholar]
  44. Nagase H., Fields C. G., Fields G. B. Design and characterization of a fluorogenic substrate selectively hydrolyzed by stromelysin 1 (matrix metalloproteinase-3). J Biol Chem. 1994 Aug 19;269(33):20952–20957. [PubMed] [Google Scholar]
  45. Nicholson P., Addison C., Cross A. M., Kennard J., Preston V. G., Rixon F. J. Localization of the herpes simplex virus type 1 major capsid protein VP5 to the cell nucleus requires the abundant scaffolding protein VP22a. J Gen Virol. 1994 May;75(Pt 5):1091–1099. doi: 10.1099/0022-1317-75-5-1091. [DOI] [PubMed] [Google Scholar]
  46. O'Callaghan D. J., Randall C. C. Molecular anatomy of herpesviruses: recent studies. Prog Med Virol. 1976;22:152–210. [PubMed] [Google Scholar]
  47. Perona J. J., Craik C. S. Structural basis of substrate specificity in the serine proteases. Protein Sci. 1995 Mar;4(3):337–360. doi: 10.1002/pro.5560040301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Preston V. G., Coates J. A., Rixon F. J. Identification and characterization of a herpes simplex virus gene product required for encapsidation of virus DNA. J Virol. 1983 Mar;45(3):1056–1064. doi: 10.1128/jvi.45.3.1056-1064.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Preston V. G., Rixon F. J., McDougall I. M., McGregor M., al Kobaisi M. F. Processing of the herpes simplex virus assembly protein ICP35 near its carboxy terminal end requires the product of the whole of the UL26 reading frame. Virology. 1992 Jan;186(1):87–98. doi: 10.1016/0042-6822(92)90063-u. [DOI] [PubMed] [Google Scholar]
  50. Preston V. G., al-Kobaisi M. F., McDougall I. M., Rixon F. J. The herpes simplex virus gene UL26 proteinase in the presence of the UL26.5 gene product promotes the formation of scaffold-like structures. J Gen Virol. 1994 Sep;75(Pt 9):2355–2366. doi: 10.1099/0022-1317-75-9-2355. [DOI] [PubMed] [Google Scholar]
  51. Qiu X., Culp J. S., DiLella A. G., Hellmig B., Hoog S. S., Janson C. A., Smith W. W., Abdel-Meguid S. S. Unique fold and active site in cytomegalovirus protease. Nature. 1996 Sep 19;383(6597):275–279. doi: 10.1038/383275a0. [DOI] [PubMed] [Google Scholar]
  52. Renne R., Zhong W., Herndier B., McGrath M., Abbey N., Kedes D., Ganem D. Lytic growth of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med. 1996 Mar;2(3):342–346. doi: 10.1038/nm0396-342. [DOI] [PubMed] [Google Scholar]
  53. Rixon F. J., Cross A. M., Addison C., Preston V. G. The products of herpes simplex virus type 1 gene UL26 which are involved in DNA packaging are strongly associated with empty but not with full capsids. J Gen Virol. 1988 Nov;69(Pt 11):2879–2891. doi: 10.1099/0022-1317-69-11-2879. [DOI] [PubMed] [Google Scholar]
  54. Russo J. J., Bohenzky R. A., Chien M. C., Chen J., Yan M., Maddalena D., Parry J. P., Peruzzi D., Edelman I. S., Chang Y. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14862–14867. doi: 10.1073/pnas.93.25.14862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Schechter I., Berger A. On the active site of proteases. 3. Mapping the active site of papain; specific peptide inhibitors of papain. Biochem Biophys Res Commun. 1968 Sep 6;32(5):898–902. doi: 10.1016/0006-291x(68)90326-4. [DOI] [PubMed] [Google Scholar]
  56. Sherman G., Bachenheimer S. L. Characterization of intranuclear capsids made by ts morphogenic mutants of HSV-1. Virology. 1988 Apr;163(2):471–480. doi: 10.1016/0042-6822(88)90288-7. [DOI] [PubMed] [Google Scholar]
  57. Shieh H. S., Kurumbail R. G., Stevens A. M., Stegeman R. A., Sturman E. J., Pak J. Y., Wittwer A. J., Palmier M. O., Wiegand R. C., Holwerda B. C. Three-dimensional structure of human cytomegalovirus protease. Nature. 1996 Sep 19;383(6597):279–282. doi: 10.1038/383279a0. [DOI] [PubMed] [Google Scholar]
  58. Soulier J., Grollet L., Oksenhendler E., Cacoub P., Cazals-Hatem D., Babinet P., d'Agay M. F., Clauvel J. P., Raphael M., Degos L. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood. 1995 Aug 15;86(4):1276–1280. [PubMed] [Google Scholar]
  59. Stevens J. T., Mapelli C., Tsao J., Hail M., O'Boyle D., 2nd, Weinheimer S. P., Diianni C. L. In vitro proteolytic activity and active-site identification of the human cytomegalovirus protease. Eur J Biochem. 1994 Dec 1;226(2):361–367. doi: 10.1111/j.1432-1033.1994.tb20060.x. [DOI] [PubMed] [Google Scholar]
  60. Thomsen D. R., Roof L. L., Homa F. L. Assembly of herpes simplex virus (HSV) intermediate capsids in insect cells infected with recombinant baculoviruses expressing HSV capsid proteins. J Virol. 1994 Apr;68(4):2442–2457. doi: 10.1128/jvi.68.4.2442-2457.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Tigue N. J., Matharu P. J., Roberts N. A., Mills J. S., Kay J., Jupp R. Cloning, expression and characterization of the proteinase from human herpesvirus 6. J Virol. 1996 Jun;70(6):4136–4141. doi: 10.1128/jvi.70.6.4136-4141.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Tong L., Qian C., Massariol M. J., Bonneau P. R., Cordingley M. G., Lagacé L. A new serine-protease fold revealed by the crystal structure of human cytomegalovirus protease. Nature. 1996 Sep 19;383(6597):272–275. doi: 10.1038/383272a0. [DOI] [PubMed] [Google Scholar]
  63. Welch A. R., McNally L. M., Hall M. R., Gibson W. Herpesvirus proteinase: site-directed mutagenesis used to study maturational, release, and inactivation cleavage sites of precursor and to identify a possible catalytic site serine and histidine. J Virol. 1993 Dec;67(12):7360–7372. doi: 10.1128/jvi.67.12.7360-7372.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Welch A. R., Woods A. S., McNally L. M., Cotter R. J., Gibson W. A herpesvirus maturational proteinase, assemblin: identification of its gene, putative active site domain, and cleavage site. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10792–10796. doi: 10.1073/pnas.88.23.10792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Whitby D., Howard M. R., Tenant-Flowers M., Brink N. S., Copas A., Boshoff C., Hatzioannou T., Suggett F. E., Aldam D. M., Denton A. S. Detection of Kaposi sarcoma associated herpesvirus in peripheral blood of HIV-infected individuals and progression to Kaposi's sarcoma. Lancet. 1995 Sep 23;346(8978):799–802. doi: 10.1016/s0140-6736(95)91619-9. [DOI] [PubMed] [Google Scholar]
  66. Wood L. J., Baxter M. K., Plafker S. M., Gibson W. Human cytomegalovirus capsid assembly protein precursor (pUL80.5) interacts with itself and with the major capsid protein (pUL86) through two different domains. J Virol. 1997 Jan;71(1):179–190. doi: 10.1128/jvi.71.1.179-190.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Zhong W., Wang H., Herndier B., Ganem D. Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6641–6646. doi: 10.1073/pnas.93.13.6641. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES