Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1992 Aug;36(8):1611–1613. doi: 10.1128/aac.36.8.1611

Activity of azithromycin against Mycobacterium avium infection in beige mice.

M H Cynamon 1, S P Klemens 1
PMCID: PMC192015  PMID: 1329622

Abstract

The comparative activities of azithromycin and clarithromycin and the activities of azithromycin alone and in combination with other antimycobacterial agents were evaluated in the beige mouse model of disseminated Mycobacterium avium complex infection. Azithromycin was similar in activity to clarithromycin. Azithromycin plus clofazimine plus ethambutol reduced the number of splenic organisms more than azithromycin alone, while the combination was less active than azithromycin alone for bacteria in lungs. Rifabutin had activity similar to that of azithromycin for organisms in spleens and lungs. Rifabutin plus azithromycin was more active than either agent alone for organisms in spleens, but the combination's activity was not significantly different from that of rifabutin for organisms in lungs. The activity of azithromycin against several M. avium complex isolates was evaluated. The reduction of viable cell counts in spleens ranged from 1.7 to 0.8 log units. For the three isolates studied, there was little correlation between the in vitro MIC and the in vivo activity.

Full text

PDF
1611

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cynamon M. H. Comparative in vitro activities of MDL 473, rifampin, and ansamycin against Mycobacterium intracellulare. Antimicrob Agents Chemother. 1985 Sep;28(3):440–441. doi: 10.1128/aac.28.3.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cynamon M. H., Swenson C. E., Palmer G. S., Ginsberg R. S. Liposome-encapsulated-amikacin therapy of Mycobacterium avium complex infection in beige mice. Antimicrob Agents Chemother. 1989 Aug;33(8):1179–1183. doi: 10.1128/aac.33.8.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dautzenberg B., Truffot C., Legris S., Meyohas M. C., Berlie H. C., Mercat A., Chevret S., Grosset J. Activity of clarithromycin against Mycobacterium avium infection in patients with the acquired immune deficiency syndrome. A controlled clinical trial. Am Rev Respir Dis. 1991 Sep;144(3 Pt 1):564–569. doi: 10.1164/ajrccm/144.3_Pt_1.564. [DOI] [PubMed] [Google Scholar]
  4. Fernandes P. B., Hardy D. J., McDaniel D., Hanson C. W., Swanson R. N. In vitro and in vivo activities of clarithromycin against Mycobacterium avium. Antimicrob Agents Chemother. 1989 Sep;33(9):1531–1534. doi: 10.1128/aac.33.9.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Girard A. E., Girard D., English A. R., Gootz T. D., Cimochowski C. R., Faiella J. A., Haskell S. L., Retsema J. A. Pharmacokinetic and in vivo studies with azithromycin (CP-62,993), a new macrolide with an extended half-life and excellent tissue distribution. Antimicrob Agents Chemother. 1987 Dec;31(12):1948–1954. doi: 10.1128/aac.31.12.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Inderlied C. B., Kolonoski P. T., Wu M., Young L. S. In vitro and in vivo activity of azithromycin (CP 62,993) against the Mycobacterium avium complex. J Infect Dis. 1989 May;159(5):994–997. doi: 10.1093/infdis/159.5.994. [DOI] [PubMed] [Google Scholar]
  7. Klemens S. P., Cynamon M. H. In vivo activities of newer rifamycin analogs against Mycobacterium avium infection. Antimicrob Agents Chemother. 1991 Oct;35(10):2026–2030. doi: 10.1128/aac.35.10.2026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Klemens S. P., Cynamon M. H., Swenson C. E., Ginsberg R. S. Liposome-encapsulated-gentamicin therapy of Mycobacterium avium complex infection in beige mice. Antimicrob Agents Chemother. 1990 Jun;34(6):967–970. doi: 10.1128/aac.34.6.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Naik S., Ruck R. In vitro activities of several new macrolide antibiotics against Mycobacterium avium complex. Antimicrob Agents Chemother. 1989 Sep;33(9):1614–1616. doi: 10.1128/aac.33.9.1614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Retsema J., Girard A., Schelkly W., Manousos M., Anderson M., Bright G., Borovoy R., Brennan L., Mason R. Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms. Antimicrob Agents Chemother. 1987 Dec;31(12):1939–1947. doi: 10.1128/aac.31.12.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Young L. S., Wiviott L., Wu M., Kolonoski P., Bolan R., Inderlied C. B. Azithromycin for treatment of Mycobacterium avium-intracellulare complex infection in patients with AIDS. Lancet. 1991 Nov 2;338(8775):1107–1109. doi: 10.1016/0140-6736(91)91965-w. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES