Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1992 Aug;36(8):1665–1670. doi: 10.1128/aac.36.8.1665

Platelet microbicidal protein enhances antibiotic-induced killing of and postantibiotic effect in Staphylococcus aureus.

M R Yeaman 1, D C Norman 1, A S Bayer 1
PMCID: PMC192027  PMID: 1416849

Abstract

The interaction of bacteria with platelets at the cardiac valve surface represents a critical event in the induction of infective endocarditis. Platelets are thought to modulate induction or propagation of endocarditis via secretion of alpha-granule-derived platelet microbicidal protein (PMP) (a low-molecular-mass, cationic, heat-stable protein distinct from lysozyme). We studied representative PMP-susceptible and PMP-resistant Staphylococcus aureus isolates to determine their in vitro bacteriostatic and bactericidal susceptibilities to combinations of PMP plus antistaphylococcal antibiotics. PMP plus oxacillin exerted a synergistic bactericidal effect, in contrast to either agent alone, regardless of the intrinsic PMP susceptibility of the isolate tested. Exposure of S. aureus to PMP alone resulted in residual postexposure growth-inhibitory effects lasting from 0.9 to 1.8 h. Sequential exposure of S. aureus isolates to PMP for 30 min followed by exposure to either oxacillin or vancomycin (each at 10x the MIC for 120 min) resulted in a significant extension of the postantibiotic-effect duration compared with antibiotic exposure alone (P less than or equal to 0.05). Collectively, these findings indicate that PMP both enhances antibiotic-induced killing of S. aureus and increases the postantibiotic-effect duration in S. aureus.

Full text

PDF
1665

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asensi V., Fierer J. Synergistic effect of human lysozyme plus ampicillin or beta-lysin on the killing of Listeria monocytogenes. J Infect Dis. 1991 Mar;163(3):574–578. doi: 10.1093/infdis/163.3.574. [DOI] [PubMed] [Google Scholar]
  2. Berney P., Francioli P. Successful prophylaxis of experimental streptococcal endocarditis with single-dose amoxicillin administered after bacterial challenge. J Infect Dis. 1990 Feb;161(2):281–285. doi: 10.1093/infdis/161.2.281. [DOI] [PubMed] [Google Scholar]
  3. Buiting A. G., Thompson J., van der Keur D., Schmal-Bauer W. C., Bertina R. M. Procoagulant activity of endocardial vegetations and blood monocytes in rabbits with Streptococcus sanguis endocarditis. Thromb Haemost. 1989 Nov 24;62(3):1029–1033. [PubMed] [Google Scholar]
  4. Chin N. X., Neu H. C. Post-antibiotic suppressive effect of ciprofloxacin against gram-positive and gram-negative bacteria. Am J Med. 1987 Apr 27;82(4A):58–62. [PubMed] [Google Scholar]
  5. Clawson C. C., White J. G. Platelet interaction with bacteria. II. Fate of the bacteria. Am J Pathol. 1971 Nov;65(2):381–397. [PMC free article] [PubMed] [Google Scholar]
  6. Davidson R. J., Zhanel G. G., Phillips R., Hoban D. J. Human serum enhances the postantibiotic effect of fluoroquinolones against Staphylococcus aureus. Antimicrob Agents Chemother. 1991 Jun;35(6):1261–1263. doi: 10.1128/aac.35.6.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Donaldson D. M., Tew J. G. beta-Lysin of platelet origin. Bacteriol Rev. 1977 Jun;41(2):501–513. doi: 10.1128/br.41.2.501-513.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Drake T. A., Pang M. Effects of interleukin-1, lipopolysaccharide, and streptococci on procoagulant activity of cultured human cardiac valve endothelial and stromal cells. Infect Immun. 1989 Feb;57(2):507–512. doi: 10.1128/iai.57.2.507-512.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Drake T. A., Pang M. Staphylococcus aureus induces tissue factor expression in cultured human cardiac valve endothelium. J Infect Dis. 1988 Apr;157(4):749–756. doi: 10.1093/infdis/157.4.749. [DOI] [PubMed] [Google Scholar]
  10. Durack D. T., Beeson P. B. Experimental bacterial endocarditis. I. Colonization of a sterile vegetation. Br J Exp Pathol. 1972 Feb;53(1):44–49. [PMC free article] [PubMed] [Google Scholar]
  11. Durack D. T., Beeson P. B. Experimental bacterial endocarditis. II. Survival of a bacteria in endocardial vegetations. Br J Exp Pathol. 1972 Feb;53(1):50–53. [PMC free article] [PubMed] [Google Scholar]
  12. Durack D. T., Beeson P. B., Petersdorf R. G. Experimental bacterial endocarditis. 3. Production and progress of the disease in rabbits. Br J Exp Pathol. 1973 Apr;54(2):142–151. [PMC free article] [PubMed] [Google Scholar]
  13. Durack D. T. Experimental bacterial endocarditis. IV. Structure and evolution of very early lesions. J Pathol. 1975 Feb;115(2):81–89. doi: 10.1002/path.1711150204. [DOI] [PubMed] [Google Scholar]
  14. Dutcher B. S., Reynard A. M., Beck M. E., Cunningham R. K. Potentiation of antibiotic bactericidal activity by normal human serum. Antimicrob Agents Chemother. 1978 May;13(5):820–826. doi: 10.1128/aac.13.5.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gold M. J., Calmon J., Wendeler M., Levison M. E., Johnson C. C. Synergistic bactericidal activity of rat serum with vancomycin against enterococci. J Infect Dis. 1991 Jun;163(6):1358–1361. doi: 10.1093/infdis/163.6.1358. [DOI] [PubMed] [Google Scholar]
  16. Herrmann M., Suchard S. J., Boxer L. A., Waldvogel F. A., Lew P. D. Thrombospondin binds to Staphylococcus aureus and promotes staphylococcal adherence to surfaces. Infect Immun. 1991 Jan;59(1):279–288. doi: 10.1128/iai.59.1.279-288.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Herzberg M. C., Gong K., MacFarlane G. D., Erickson P. R., Soberay A. H., Krebsbach P. H., Manjula G., Schilling K., Bowen W. H. Phenotypic characterization of Streptococcus sanguis virulence factors associated with bacterial endocarditis. Infect Immun. 1990 Feb;58(2):515–522. doi: 10.1128/iai.58.2.515-522.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Igarashi K., Matsuyama T. Alternative activity of beta-lactam antibiotics against methicillin- and cephem-resistant Staphylococcus aureus in the presence of respiratory tract mucus. J Infect Dis. 1990 Feb;161(2):250–254. doi: 10.1093/infdis/161.2.250. [DOI] [PubMed] [Google Scholar]
  19. Kessler C. M., Nussbaum E., Tuazon C. U. In vitro correlation of platelet aggregation with occurrence of disseminated intravascular coagulation and subacute bacterial endocarditis. J Lab Clin Med. 1987 Jun;109(6):647–652. [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Leggett J. E., Craig W. A. Enhancing effect of serum ultrafiltrate on the activity of cephalosporins against gram-negative bacilli. Antimicrob Agents Chemother. 1989 Jan;33(1):35–40. doi: 10.1128/aac.33.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lowy F. D., Chang D. S., Neuhaus E. G., Horne D. S., Tomasz A., Steigbigel N. H. Effect of penicillin on the adherence of Streptococcus sanguis in vitro and in the rabbit model of endocarditis. J Clin Invest. 1983 Mar;71(3):668–675. doi: 10.1172/JCI110813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McDonald P. J., Craig W. A., Kunin C. M. Persistent effect of antibiotics on Staphylococcus aureus after exposure for limited periods of time. J Infect Dis. 1977 Feb;135(2):217–223. doi: 10.1093/infdis/135.2.217. [DOI] [PubMed] [Google Scholar]
  24. Scheld W. M., Valone J. A., Sande M. A. Bacterial adherence in the pathogenesis of endocarditis. Interaction of bacterial dextran, platelets, and fibrin. J Clin Invest. 1978 May;61(5):1394–1404. doi: 10.1172/JCI109057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Scheld W. M., Zak O., Vosbeck K., Sande M. A. Bacterial adhesion in the pathogenesis of infective endocarditis. Effect of subinhibitory antibiotic concentrations on streptococcal adhesion in vitro and the development of endocarditis in rabbits. J Clin Invest. 1981 Nov;68(5):1381–1384. doi: 10.1172/JCI110388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Van der Auwera P., Klastersky J. Serum bactericidal activity and postantibiotic effect in serum of patients with urinary tract infection receiving high-dose amikacin. Antimicrob Agents Chemother. 1987 Jul;31(7):1061–1068. doi: 10.1128/aac.31.7.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yeaman M. R., Norman D. C., Bayer A. S. Staphylococcus aureus susceptibility to thrombin-induced platelet microbicidal protein is independent of platelet adherence and aggregation in vitro. Infect Immun. 1992 Jun;60(6):2368–2374. doi: 10.1128/iai.60.6.2368-2374.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yeaman M. R., Puentes S. M., Norman D. C., Bayer A. S. Partial characterization and staphylocidal activity of thrombin-induced platelet microbicidal protein. Infect Immun. 1992 Mar;60(3):1202–1209. doi: 10.1128/iai.60.3.1202-1209.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yeaman M. R., Sullam P. M., Dazin P. F., Norman D. C., Bayer A. S. Characterization of Staphylococcus aureus-platelet binding by quantitative flow cytometric analysis. J Infect Dis. 1992 Jul;166(1):65–73. doi: 10.1093/infdis/166.1.65. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES