Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Oct;71(10):7187–7197. doi: 10.1128/jvi.71.10.7187-7197.1997

Phosphorylation of the hepatitis C virus NS5A protein in vitro and in vivo: properties of the NS5A-associated kinase.

K E Reed 1, J Xu 1, C M Rice 1
PMCID: PMC192058  PMID: 9311791

Abstract

NS5A derived from a hepatitis C virus (HCV) genotype 1b isolate has previously been shown to undergo phosphorylation on serine residues (T. Kaneko, Y. Tanji, S. Satoh, M. Hijikata, S. Asabe, K. Kimura, and K. Shimotohno, Biochem. Biophys. Res. Commun. 205:320-326, 1994). In this report, phosphorylation of NS5A derived from HCV isolates of the 1a and distantly related 2a genotypes is demonstrated. Phosphoamino acid analysis of NS5A from the 1a isolate indicated that phosphorylation occurs predominantly on serine, with a minor fraction of threonine residues also being phosphorylated. NS5A phosphorylation was observed in diverse cell types, including COS-1, BHK-21, HeLa, and the hepatoma cell line HuH-7. Phosphorylation of a glutathione S-transferase (GST)/HCV-H NS5A fusion protein was also demonstrated in an in vitro kinase assay. This activity seemed to be highest when the pH of the reaction was neutral or slightly alkaline and displayed a preference for Mn2+ over Mg2+, with an optimum concentration of approximately 10 mM Mn2+. Somewhat surprisingly, in vitro phosphorylation of NS5A was inhibited by the addition of > or = 0.25 mM Ca2+ to reaction buffer containing Mn2+ and/or Mg2+. Comparison of phosphopeptide maps of NS5A phosphorylated in vitro and in cultured cells showed that most of the phosphopeptides comigrated, suggesting that one or more kinases involved in NS5A phosphorylation in vivo and in vitro are the same. The effects of various kinase inhibitors on NS5A phosphorylation were consistent with a kinase activity belonging to the CMGC group of serine-threonine kinases. The development of an in vitro kinase assay for NS5A phosphorylation should facilitate identification of kinase(s) responsible for its phosphorylation and of phosphorylation sites which may influence the function of NS5A in HCV propagation.

Full Text

The Full Text of this article is available as a PDF (874.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham R. T., Acquarone M., Andersen A., Asensi A., Bellé R., Berger F., Bergounioux C., Brunn G., Buquet-Fagot C., Fagot D. Cellular effects of olomoucine, an inhibitor of cyclin-dependent kinases. Biol Cell. 1995;83(2-3):105–120. doi: 10.1016/0248-4900(96)81298-6. [DOI] [PubMed] [Google Scholar]
  2. Agostinis P., Vandenbogaerde A., Donella-Deana A., Pinna L. A., Lee K. T., Goris J., Merlevede W., Vandenheede J. R., De Witte P. Photosensitized inhibition of growth factor-regulated protein kinases by hypericin. Biochem Pharmacol. 1995 May 26;49(11):1615–1622. doi: 10.1016/0006-2952(95)00097-j. [DOI] [PubMed] [Google Scholar]
  3. Alter M. J. Epidemiology of hepatitis C in the West. Semin Liver Dis. 1995 Feb;15(1):5–14. doi: 10.1055/s-2007-1007259. [DOI] [PubMed] [Google Scholar]
  4. Asabe S. I., Tanji Y., Satoh S., Kaneko T., Kimura K., Shimotohno K. The N-terminal region of hepatitis C virus-encoded NS5A is important for NS4A-dependent phosphorylation. J Virol. 1997 Jan;71(1):790–796. doi: 10.1128/jvi.71.1.790-796.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barik S., Banerjee A. K. Phosphorylation by cellular casein kinase II is essential for transcriptional activity of vesicular stomatitis virus phosphoprotein P. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6570–6574. doi: 10.1073/pnas.89.14.6570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barik S., Banerjee A. K. Sequential phosphorylation of the phosphoprotein of vesicular stomatitis virus by cellular and viral protein kinases is essential for transcription activation. J Virol. 1992 Feb;66(2):1109–1118. doi: 10.1128/jvi.66.2.1109-1118.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Byrappa S., Pan Y. B., Gupta K. C. Sendai virus P protein is constitutively phosphorylated at serine249: high phosphorylation potential of the P protein. Virology. 1996 Feb 1;216(1):228–234. doi: 10.1006/viro.1996.0052. [DOI] [PubMed] [Google Scholar]
  8. Chijiwa T., Mishima A., Hagiwara M., Sano M., Hayashi K., Inoue T., Naito K., Toshioka T., Hidaka H. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem. 1990 Mar 25;265(9):5267–5272. [PubMed] [Google Scholar]
  9. Das T., Schuster A., Schneider-Schaulies S., Banerjee A. K. Involvement of cellular casein kinase II in the phosphorylation of measles virus P protein: identification of phosphorylation sites. Virology. 1995 Aug 1;211(1):218–226. doi: 10.1006/viro.1995.1394. [DOI] [PubMed] [Google Scholar]
  10. De B. P., Gupta S., Gupta S., Banerjee A. K. Cellular protein kinase C isoform zeta regulates human parainfluenza virus type 3 replication. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5204–5208. doi: 10.1073/pnas.92.11.5204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Enomoto N., Sakuma I., Asahina Y., Kurosaki M., Murakami T., Yamamoto C., Izumi N., Marumo F., Sato C. Comparison of full-length sequences of interferon-sensitive and resistant hepatitis C virus 1b. Sensitivity to interferon is conferred by amino acid substitutions in the NS5A region. J Clin Invest. 1995 Jul;96(1):224–230. doi: 10.1172/JCI118025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Enomoto N., Sakuma I., Asahina Y., Kurosaki M., Murakami T., Yamamoto C., Ogura Y., Izumi N., Marumo F., Sato C. Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection. N Engl J Med. 1996 Jan 11;334(2):77–81. doi: 10.1056/NEJM199601113340203. [DOI] [PubMed] [Google Scholar]
  13. Fuerst T. R., Niles E. G., Studier F. W., Moss B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122–8126. doi: 10.1073/pnas.83.21.8122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gale M. J., Jr, Korth M. J., Tang N. M., Tan S. L., Hopkins D. A., Dever T. E., Polyak S. J., Gretch D. R., Katze M. G. Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein. Virology. 1997 Apr 14;230(2):217–227. doi: 10.1006/viro.1997.8493. [DOI] [PubMed] [Google Scholar]
  15. Grakoui A., Wychowski C., Lin C., Feinstone S. M., Rice C. M. Expression and identification of hepatitis C virus polyprotein cleavage products. J Virol. 1993 Mar;67(3):1385–1395. doi: 10.1128/jvi.67.3.1385-1395.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heilmeyer L. M., Jr Molecular basis of signal integration in phosphorylase kinase. Biochim Biophys Acta. 1991 Sep 3;1094(2):168–174. doi: 10.1016/0167-4889(91)90005-i. [DOI] [PubMed] [Google Scholar]
  17. Hijikata M., Mizushima H., Tanji Y., Komoda Y., Hirowatari Y., Akagi T., Kato N., Kimura K., Shimotohno K. Proteolytic processing and membrane association of putative nonstructural proteins of hepatitis C virus. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10773–10777. doi: 10.1073/pnas.90.22.10773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ide Y., Zhang L., Chen M., Inchauspe G., Bahl C., Sasaguri Y., Padmanabhan R. Characterization of the nuclear localization signal and subcellular distribution of hepatitis C virus nonstructural protein NS5A. Gene. 1996 Dec 5;182(1-2):203–211. doi: 10.1016/s0378-1119(96)00555-0. [DOI] [PubMed] [Google Scholar]
  19. Inagaki M., Kawamoto S., Itoh H., Saitoh M., Hagiwara M., Takahashi J., Hidaka H. Naphthalenesulfonamides as calmodulin antagonists and protein kinase inhibitors. Mol Pharmacol. 1986 Jun;29(6):577–581. [PubMed] [Google Scholar]
  20. Kaelin W. G., Jr, Pallas D. C., DeCaprio J. A., Kaye F. J., Livingston D. M. Identification of cellular proteins that can interact specifically with the T/E1A-binding region of the retinoblastoma gene product. Cell. 1991 Feb 8;64(3):521–532. doi: 10.1016/0092-8674(91)90236-r. [DOI] [PubMed] [Google Scholar]
  21. Kaneko T., Tanji Y., Satoh S., Hijikata M., Asabe S., Kimura K., Shimotohno K. Production of two phosphoproteins from the NS5A region of the hepatitis C viral genome. Biochem Biophys Res Commun. 1994 Nov 30;205(1):320–326. doi: 10.1006/bbrc.1994.2667. [DOI] [PubMed] [Google Scholar]
  22. Kapoor M., Zhang L., Ramachandra M., Kusukawa J., Ebner K. E., Padmanabhan R. Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5. J Biol Chem. 1995 Aug 11;270(32):19100–19106. doi: 10.1074/jbc.270.32.19100. [DOI] [PubMed] [Google Scholar]
  23. Kolykhalov A. A., Agapov E. V., Blight K. J., Mihalik K., Feinstone S. M., Rice C. M. Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science. 1997 Jul 25;277(5325):570–574. doi: 10.1126/science.277.5325.570. [DOI] [PubMed] [Google Scholar]
  24. Lastarza M. W., Grakoui A., Rice C. M. Deletion and duplication mutations in the C-terminal nonconserved region of Sindbis virus nsP3: effects on phosphorylation and on virus replication in vertebrate and invertebrate cells. Virology. 1994 Jul;202(1):224–232. doi: 10.1006/viro.1994.1338. [DOI] [PubMed] [Google Scholar]
  25. Lemm J. A., Rice C. M. Assembly of functional Sindbis virus RNA replication complexes: requirement for coexpression of P123 and P34. J Virol. 1993 Apr;67(4):1905–1915. doi: 10.1128/jvi.67.4.1905-1915.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Li G. P., La Starza M. W., Hardy W. R., Strauss J. H., Rice C. M. Phosphorylation of Sindbis virus nsP3 in vivo and in vitro. Virology. 1990 Nov;179(1):416–427. doi: 10.1016/0042-6822(90)90310-n. [DOI] [PubMed] [Google Scholar]
  27. Lin C., Prágai B. M., Grakoui A., Xu J., Rice C. M. Hepatitis C virus NS3 serine proteinase: trans-cleavage requirements and processing kinetics. J Virol. 1994 Dec;68(12):8147–8157. doi: 10.1128/jvi.68.12.8147-8157.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Manabe S., Fuke I., Tanishita O., Kaji C., Gomi Y., Yoshida S., Mori C., Takamizawa A., Yosida I., Okayama H. Production of nonstructural proteins of hepatitis C virus requires a putative viral protease encoded by NS3. Virology. 1994 Feb;198(2):636–644. doi: 10.1006/viro.1994.1075. [DOI] [PubMed] [Google Scholar]
  29. Mansell C. J., Locarnini S. A. Epidemiology of hepatitis C in the East. Semin Liver Dis. 1995 Feb;15(1):15–32. doi: 10.1055/s-2007-1007260. [DOI] [PubMed] [Google Scholar]
  30. Mazumder B., Adhikary G., Barik S. Bacterial expression of human respiratory syncytial viral phosphoprotein P and identification of Ser237 as the site of phosphorylation by cellular casein kinase II. Virology. 1994 Nov 15;205(1):93–103. doi: 10.1006/viro.1994.1623. [DOI] [PubMed] [Google Scholar]
  31. Mazumder B., Barik S. Requirement of casein kinase II-mediated phosphorylation for the transcriptional activity of human respiratory syncytial viral phosphoprotein P: transdominant negative phenotype of phosphorylation-defective P mutants. Virology. 1994 Nov 15;205(1):104–111. doi: 10.1006/viro.1994.1624. [DOI] [PubMed] [Google Scholar]
  32. Moss B., Elroy-Stein O., Mizukami T., Alexander W. A., Fuerst T. R. Product review. New mammalian expression vectors. Nature. 1990 Nov 1;348(6296):91–92. doi: 10.1038/348091a0. [DOI] [PubMed] [Google Scholar]
  33. Nakabayashi H., Taketa K., Miyano K., Yamane T., Sato J. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res. 1982 Sep;42(9):3858–3863. [PubMed] [Google Scholar]
  34. Okamoto H., Okada S., Sugiyama Y., Kurai K., Iizuka H., Machida A., Miyakawa Y., Mayumi M. Nucleotide sequence of the genomic RNA of hepatitis C virus isolated from a human carrier: comparison with reported isolates for conserved and divergent regions. J Gen Virol. 1991 Nov;72(Pt 11):2697–2704. doi: 10.1099/0022-1317-72-11-2697. [DOI] [PubMed] [Google Scholar]
  35. Omura S., Sasaki Y., Iwai Y., Takeshima H. Staurosporine, a potentially important gift from a microorganism. J Antibiot (Tokyo) 1995 Jul;48(7):535–548. doi: 10.7164/antibiotics.48.535. [DOI] [PubMed] [Google Scholar]
  36. Sharara A. I., Hunt C. M., Hamilton J. D. Hepatitis C. Ann Intern Med. 1996 Oct 15;125(8):658–668. doi: 10.7326/0003-4819-125-8-199610150-00006. [DOI] [PubMed] [Google Scholar]
  37. Tanji Y., Kaneko T., Satoh S., Shimotohno K. Phosphorylation of hepatitis C virus-encoded nonstructural protein NS5A. J Virol. 1995 Jul;69(7):3980–3986. doi: 10.1128/jvi.69.7.3980-3986.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Toullec D., Pianetti P., Coste H., Bellevergue P., Grand-Perret T., Ajakane M., Baudet V., Boissin P., Boursier E., Loriolle F. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem. 1991 Aug 25;266(24):15771–15781. [PubMed] [Google Scholar]
  39. Veselý J., Havlicek L., Strnad M., Blow J. J., Donella-Deana A., Pinna L., Letham D. S., Kato J., Detivaud L., Leclerc S. Inhibition of cyclin-dependent kinases by purine analogues. Eur J Biochem. 1994 Sep 1;224(2):771–786. doi: 10.1111/j.1432-1033.1994.00771.x. [DOI] [PubMed] [Google Scholar]
  40. Yanagihara N., Tachikawa E., Izumi F., Yasugawa S., Yamamoto H., Miyamoto E. Staurosporine: an effective inhibitor for Ca2+/calmodulin-dependent protein kinase II. J Neurochem. 1991 Jan;56(1):294–298. doi: 10.1111/j.1471-4159.1991.tb02595.x. [DOI] [PubMed] [Google Scholar]
  41. Yankulov K., Yamashita K., Roy R., Egly J. M., Bentley D. L. The transcriptional elongation inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole inhibits transcription factor IIH-associated protein kinase. J Biol Chem. 1995 Oct 13;270(41):23922–23925. doi: 10.1074/jbc.270.41.23922. [DOI] [PubMed] [Google Scholar]
  42. Zandomeni R., Zandomeni M. C., Shugar D., Weinmann R. Casein kinase type II is involved in the inhibition by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole of specific RNA polymerase II transcription. J Biol Chem. 1986 Mar 5;261(7):3414–3419. [PubMed] [Google Scholar]
  43. van der Geer P., Hunter T. Phosphopeptide mapping and phosphoamino acid analysis by electrophoresis and chromatography on thin-layer cellulose plates. Electrophoresis. 1994 Mar-Apr;15(3-4):544–554. doi: 10.1002/elps.1150150173. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES