Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Oct;71(10):7246–7252. doi: 10.1128/jvi.71.10.7246-7252.1997

Identification of two surface proteins from C6/36 cells that bind dengue type 4 virus.

J S Salas-Benito 1, R M del Angel 1
PMCID: PMC192065  PMID: 9311798

Abstract

Dengue viruses infect cells by attaching to a surface receptor, probably through the envelope (E) glycoprotein, located on the surface of the viral membrane. However, the identity of the dengue virus receptor in the mosquito and in mammalian host cells remains unknown. To identify and characterize the molecules responsible for binding dengue virus, overlay protein blot and binding assays were performed with labeled virus. Two glycoproteins of 40 and 45 kDa located on the surface of C6/36 cells bound dengue type 4 virus. Virus binding by total and membrane proteins obtained from trypsin-treated cells was inhibited, while neuraminidase treatment did not inhibit binding. Periodate treatment of cell proteins did not reduce virus binding, but it modified the molecular weight of the polypeptide detected by overlay assays. Preincubation of C6/36 cells with electroeluted 40- and 45-kDa proteins or with specific antibodies raised against these proteins inhibited virus binding. These results strongly suggest that the 40- and 45-kDa surface proteins are putative receptors or part of a receptor complex for dengue virus.

Full Text

The Full Text of this article is available as a PDF (510.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R., King A. D., Innis B. L. Correlation of E protein binding with cell susceptibility to dengue 4 virus infection. J Gen Virol. 1992 Aug;73(Pt 8):2155–2159. doi: 10.1099/0022-1317-73-8-2155. [DOI] [PubMed] [Google Scholar]
  2. Barth O. M. Replication of dengue viruses in mosquito cell cultures--a model from ultrastructural observations. Mem Inst Oswaldo Cruz. 1992 Oct-Dec;87(4):565–574. doi: 10.1590/s0074-02761992000400017. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Chambers T. J., Hahn C. S., Galler R., Rice C. M. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol. 1990;44:649–688. doi: 10.1146/annurev.mi.44.100190.003245. [DOI] [PubMed] [Google Scholar]
  5. Chen Y., Maguire T., Marks R. M. Demonstration of binding of dengue virus envelope protein to target cells. J Virol. 1996 Dec;70(12):8765–8772. doi: 10.1128/jvi.70.12.8765-8772.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chungue E., Deubel V., Cassar O., Laille M., Martin P. M. Molecular epidemiology of dengue 3 viruses and genetic relatedness among dengue 3 strains isolated from patients with mild or severe form of dengue fever in French Polynesia. J Gen Virol. 1993 Dec;74(Pt 12):2765–2770. doi: 10.1099/0022-1317-74-12-2765. [DOI] [PubMed] [Google Scholar]
  7. Crane S. E., Buzy J., Clements J. E. Identification of cell membrane proteins that bind visna virus. J Virol. 1991 Nov;65(11):6137–6143. doi: 10.1128/jvi.65.11.6137-6143.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Daughaday C. C., Brandt W. E., McCown J. M., Russell P. K. Evidence for two mechanisms of dengue virus infection of adherent human monocytes: trypsin-sensitive virus receptors and trypsin-resistant immune complex receptors. Infect Immun. 1981 May;32(2):469–473. doi: 10.1128/iai.32.2.469-473.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Desprès P., Frenkiel M. P., Deubel V. Differences between cell membrane fusion activities of two dengue type-1 isolates reflect modifications of viral structure. Virology. 1993 Sep;196(1):209–219. doi: 10.1006/viro.1993.1469. [DOI] [PubMed] [Google Scholar]
  10. Deubel V., Kinney R. M., Trent D. W. Nucleotide sequence and deduced amino acid sequence of the nonstructural proteins of dengue type 2 virus, Jamaica genotype: comparative analysis of the full-length genome. Virology. 1988 Jul;165(1):234–244. doi: 10.1016/0042-6822(88)90677-0. [DOI] [PubMed] [Google Scholar]
  11. Deubel V., Kinney R. M., Trent D. W. Nucleotide sequence and deduced amino acid sequence of the structural proteins of dengue type 2 virus, Jamaica genotype. Virology. 1986 Dec;155(2):365–377. doi: 10.1016/0042-6822(86)90200-x. [DOI] [PubMed] [Google Scholar]
  12. Freier J. E., Grimstad P. R. Transmission of dengue virus by orally infected Aedes triseriatus. Am J Trop Med Hyg. 1983 Nov;32(6):1429–1434. doi: 10.4269/ajtmh.1983.32.1429. [DOI] [PubMed] [Google Scholar]
  13. Guirakhoo F., Heinz F. X., Kunz C. Epitope model of tick-borne encephalitis virus envelope glycoprotein E: analysis of structural properties, role of carbohydrate side chain, and conformational changes occurring at acidic pH. Virology. 1989 Mar;169(1):90–99. doi: 10.1016/0042-6822(89)90044-5. [DOI] [PubMed] [Google Scholar]
  14. Guirakhoo F., Hunt A. R., Lewis J. G., Roehrig J. T. Selection and partial characterization of dengue 2 virus mutants that induce fusion at elevated pH. Virology. 1993 May;194(1):219–223. doi: 10.1006/viro.1993.1252. [DOI] [PubMed] [Google Scholar]
  15. Halstead S. B., Larsen K., Kliks S., Peiris J. S., Cardosa J., Porterfield J. S. Comparison of P388D1 mouse macrophage cell line and human monocytes for assay of dengue-2 infection-enhancing antibodies. Am J Trop Med Hyg. 1983 Jan;32(1):157–163. doi: 10.4269/ajtmh.1983.32.157. [DOI] [PubMed] [Google Scholar]
  16. Hase T., Summers P. L., Eckels K. H. Flavivirus entry into cultured mosquito cells and human peripheral blood monocytes. Arch Virol. 1989;104(1-2):129–143. doi: 10.1007/BF01313814. [DOI] [PubMed] [Google Scholar]
  17. Heinz F. X., Auer G., Stiasny K., Holzmann H., Mandl C., Guirakhoo F., Kunz C. The interactions of the flavivirus envelope proteins: implications for virus entry and release. Arch Virol Suppl. 1994;9:339–348. doi: 10.1007/978-3-7091-9326-6_34. [DOI] [PubMed] [Google Scholar]
  18. Heinz F. X., Stiasny K., Püschner-Auer G., Holzmann H., Allison S. L., Mandl C. W., Kunz C. Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with protein prM. Virology. 1994 Jan;198(1):109–117. doi: 10.1006/viro.1994.1013. [DOI] [PubMed] [Google Scholar]
  19. Helenius A. Alphavirus and flavivirus glycoproteins: structures and functions. Cell. 1995 Jun 2;81(5):651–653. doi: 10.1016/0092-8674(95)90523-5. [DOI] [PubMed] [Google Scholar]
  20. Jin Y. M., Pardoe I. U., Burness A. T., Michalak T. I. Identification and characterization of the cell surface 70-kilodalton sialoglycoprotein(s) as a candidate receptor for encephalomyocarditis virus on human nucleated cells. J Virol. 1994 Nov;68(11):7308–7319. doi: 10.1128/jvi.68.11.7308-7319.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Khin M. M., Than K. A. Transovarial transmission of dengue 2 virus by Aedes aegypti in nature. Am J Trop Med Hyg. 1983 May;32(3):590–594. doi: 10.4269/ajtmh.1983.32.590. [DOI] [PubMed] [Google Scholar]
  22. Kliks S. Antibody-enhanced infection of monocytes as the pathogenetic mechanism for severe dengue illness. AIDS Res Hum Retroviruses. 1990 Aug;6(8):993–998. doi: 10.1089/aid.1990.6.993. [DOI] [PubMed] [Google Scholar]
  23. Kurane I., Rothman A. L., Livingston P. G., Green S., Gagnon S. J., Janus J., Innis B. L., Nimmannitya S., Nisalak A., Ennis F. A. Immunopathologic mechanisms of dengue hemorrhagic fever and dengue shock syndrome. Arch Virol Suppl. 1994;9:59–64. doi: 10.1007/978-3-7091-9326-6_7. [DOI] [PubMed] [Google Scholar]
  24. Littaua R., Kurane I., Ennis F. A. Human IgG Fc receptor II mediates antibody-dependent enhancement of dengue virus infection. J Immunol. 1990 Apr 15;144(8):3183–3186. [PubMed] [Google Scholar]
  25. Ludwig G. V., Kondig J. P., Smith J. F. A putative receptor for Venezuelan equine encephalitis virus from mosquito cells. J Virol. 1996 Aug;70(8):5592–5599. doi: 10.1128/jvi.70.8.5592-5599.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mackow E., Makino Y., Zhao B. T., Zhang Y. M., Markoff L., Buckler-White A., Guiler M., Chanock R., Lai C. J. The nucleotide sequence of dengue type 4 virus: analysis of genes coding for nonstructural proteins. Virology. 1987 Aug;159(2):217–228. doi: 10.1016/0042-6822(87)90458-2. [DOI] [PubMed] [Google Scholar]
  27. Mady B. J., Erbe D. V., Kurane I., Fanger M. W., Ennis F. A. Antibody-dependent enhancement of dengue virus infection mediated by bispecific antibodies against cell surface molecules other than Fc gamma receptors. J Immunol. 1991 Nov 1;147(9):3139–3144. [PubMed] [Google Scholar]
  28. Mady B. J., Kurane I., Erbe D. V., Fanger M. W., Ennis F. A. Neuraminidase augments Fc gamma receptor II-mediated antibody-dependent enhancement of dengue virus infection. J Gen Virol. 1993 May;74(Pt 5):839–844. doi: 10.1099/0022-1317-74-5-839. [DOI] [PubMed] [Google Scholar]
  29. Marianneau P., Mégret F., Olivier R., Morens D. M., Deubel V. Dengue 1 virus binding to human hepatoma HepG2 and simian Vero cell surfaces differs. J Gen Virol. 1996 Oct;77(Pt 10):2547–2554. doi: 10.1099/0022-1317-77-10-2547. [DOI] [PubMed] [Google Scholar]
  30. Meerovitch K., Svitkin Y. V., Lee H. S., Lejbkowicz F., Kenan D. J., Chan E. K., Agol V. I., Keene J. D., Sonenberg N. La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J Virol. 1993 Jul;67(7):3798–3807. doi: 10.1128/jvi.67.7.3798-3807.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mischak H., Neubauer C., Kuechler E., Blaas D. Characteristics of the minor group receptor of human rhinoviruses. Virology. 1988 Mar;163(1):19–25. doi: 10.1016/0042-6822(88)90229-2. [DOI] [PubMed] [Google Scholar]
  32. Rey F. A., Heinz F. X., Mandl C., Kunz C., Harrison S. C. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature. 1995 May 25;375(6529):291–298. doi: 10.1038/375291a0. [DOI] [PubMed] [Google Scholar]
  33. Rosen L. Sexual transmission of dengue viruses by Aedes albopictus. Am J Trop Med Hyg. 1987 Sep;37(2):398–402. [PubMed] [Google Scholar]
  34. Rosen L., Shroyer D. A., Tesh R. B., Freier J. E., Lien J. C. Transovarial transmission of dengue viruses by mosquitoes: Aedes albopictus and Aedes aegypti. Am J Trop Med Hyg. 1983 Sep;32(5):1108–1119. doi: 10.4269/ajtmh.1983.32.1108. [DOI] [PubMed] [Google Scholar]
  35. Smith G. W., Wright P. J. Synthesis of proteins and glycoproteins in dengue type 2 virus-infected vero and Aedes albopictus cells. J Gen Virol. 1985 Mar;66(Pt 3):559–571. doi: 10.1099/0022-1317-66-3-559. [DOI] [PubMed] [Google Scholar]
  36. Sriurairatna S., Bhamarapravati N. Replication of dengue-2 virus in Aedes albopictus mosquitoes. An electron microscopic study. Am J Trop Med Hyg. 1977 Nov;26(6 Pt 1):1199–1205. doi: 10.4269/ajtmh.1977.26.1199. [DOI] [PubMed] [Google Scholar]
  37. Stollar V., Stollar B. D., Koo R., Harrap K. A., Schlesinger R. W. Sialic acid contents of sindbis virus from vertebrate and mosquito cells. Equivalence of biological and immunological viral properties. Virology. 1976 Jan;69(1):104–115. doi: 10.1016/0042-6822(76)90198-7. [DOI] [PubMed] [Google Scholar]
  38. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. WARREN L. THE DISTRIBUTION OF SIALIC ACIDS IN NATURE. Comp Biochem Physiol. 1963 Oct;10:153–171. doi: 10.1016/0010-406x(63)90238-x. [DOI] [PubMed] [Google Scholar]
  40. Zhao B., Mackow E., Buckler-White A., Markoff L., Chanock R. M., Lai C. J., Makino Y. Cloning full-length dengue type 4 viral DNA sequences: analysis of genes coding for structural proteins. Virology. 1986 Nov;155(1):77–88. doi: 10.1016/0042-6822(86)90169-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES