Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Oct;71(10):7253–7257. doi: 10.1128/jvi.71.10.7253-7257.1997

Antiviral immune responses in Itk-deficient mice.

M F Bachmann 1, D R Littman 1, X C Liao 1
PMCID: PMC192066  PMID: 9311799

Abstract

Mice lacking Itk, a T-cell-specific protein tyrosine kinase, have reduced numbers of T cells and reduced responses to allogeneic major histocompatibility molecules. This study analyzed antiviral immune responses in mice deficient for Itk. Primary cytotoxic T-lymphocyte (CTL) responses were analyzed after infection with lymphocytic choriomeningitis virus (LCMV), vaccinia virus (VV), and vesicular stomatitis virus (VSV). Ex vivo CTL activity was consistently reduced by a factor of two to six for the different viruses. CTL responses after restimulation in vitro were similarly reduced unless exogenous cytokines were added. In the presence of interleukin-2 or concanavalin A supernatant, Itk-deficient and control mice responded similarly. Interestingly, while LCMV was completely eliminated by day 8 in both Itk-deficient and control mice, VV cleared from itk-/- mice with delayed kinetics. Antibody responses were evaluated after VSV infection. Both the T-cell-independent neutralizing immunoglobulin M (IgM) and the T-cell-dependent IgG responses were similar in Itk-deficient and control mice. Taken together, the results show that CTL responses are reduced in the absence of Itk whereas antiviral B-cell responses are not affected.

Full Text

The Full Text of this article is available as a PDF (171.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. August A., Gibson S., Kawakami Y., Kawakami T., Mills G. B., Dupont B. CD28 is associated with and induces the immediate tyrosine phosphorylation and activation of the Tec family kinase ITK/EMT in the human Jurkat leukemic T-cell line. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9347–9351. doi: 10.1073/pnas.91.20.9347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bachmann M. F., Hengartner H., Zinkernagel R. M. T helper cell-independent neutralizing B cell response against vesicular stomatitis virus: role of antigen patterns in B cell induction? Eur J Immunol. 1995 Dec;25(12):3445–3451. doi: 10.1002/eji.1830251236. [DOI] [PubMed] [Google Scholar]
  3. Bachmann M. F., Kündig T. M. In vivo versus in vitro assays for assessment of T- and B- cell function. Curr Opin Immunol. 1994 Apr;6(2):320–326. doi: 10.1016/0952-7915(94)90108-2. [DOI] [PubMed] [Google Scholar]
  4. Bachmann M. F., Kündig T. M., Kalberer C. P., Hengartner H., Zinkernagel R. M. How many specific B cells are needed to protect against a virus? J Immunol. 1994 May 1;152(9):4235–4241. [PubMed] [Google Scholar]
  5. Bachmann M. F., Rohrer U. H., Kündig T. M., Bürki K., Hengartner H., Zinkernagel R. M. The influence of antigen organization on B cell responsiveness. Science. 1993 Nov 26;262(5138):1448–1451. doi: 10.1126/science.8248784. [DOI] [PubMed] [Google Scholar]
  6. Bachmann M. F., Schorle H., Kühn R., Müller W., Hengartner H., Zinkernagel R. M., Horak I. Antiviral immune responses in mice deficient for both interleukin-2 and interleukin-4. J Virol. 1995 Aug;69(8):4842–4846. doi: 10.1128/jvi.69.8.4842-4846.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bachmann M. F., Sebzda E., Kündig T. M., Shahinian A., Speiser D. E., Mak T. W., Ohashi P. S. T cell responses are governed by avidity and co-stimulatory thresholds. Eur J Immunol. 1996 Sep;26(9):2017–2022. doi: 10.1002/eji.1830260908. [DOI] [PubMed] [Google Scholar]
  8. Binder D., Kündig T. M. Antiviral protection by CD8+ versus CD4+ T cells. CD8+ T cells correlating with cytotoxic activity in vitro are more efficient in antivaccinia virus protection than CD4-dependent IL. J Immunol. 1991 Jun 15;146(12):4301–4307. [PubMed] [Google Scholar]
  9. Cousens L. P., Orange J. S., Biron C. A. Endogenous IL-2 contributes to T cell expansion and IFN-gamma production during lymphocytic choriomeningitis virus infection. J Immunol. 1995 Dec 15;155(12):5690–5699. [PubMed] [Google Scholar]
  10. Desiderio S., Siliciano J. D. The Itk/Btk/Tec family of protein-tyrosine kinases. Chem Immunol. 1994;59:191–210. [PubMed] [Google Scholar]
  11. Gibson S., August A., Branch D., Dupont B., Mills G. M. Functional LCK Is required for optimal CD28-mediated activation of the TEC family tyrosine kinase EMT/ITK. J Biol Chem. 1996 Mar 22;271(12):7079–7083. doi: 10.1074/jbc.271.12.7079. [DOI] [PubMed] [Google Scholar]
  12. Gibson S., Leung B., Squire J. A., Hill M., Arima N., Goss P., Hogg D., Mills G. B. Identification, cloning, and characterization of a novel human T-cell-specific tyrosine kinase located at the hematopoietin complex on chromosome 5q. Blood. 1993 Sep 1;82(5):1561–1572. [PubMed] [Google Scholar]
  13. Heyeck S. D., Berg L. J. Developmental regulation of a murine T-cell-specific tyrosine kinase gene, Tsk. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):669–673. doi: 10.1073/pnas.90.2.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. June C. H., Bluestone J. A., Nadler L. M., Thompson C. B. The B7 and CD28 receptor families. Immunol Today. 1994 Jul;15(7):321–331. doi: 10.1016/0167-5699(94)90080-9. [DOI] [PubMed] [Google Scholar]
  15. Kerner J. D., Appleby M. W., Mohr R. N., Chien S., Rawlings D. J., Maliszewski C. R., Witte O. N., Perlmutter R. M. Impaired expansion of mouse B cell progenitors lacking Btk. Immunity. 1995 Sep;3(3):301–312. doi: 10.1016/1074-7613(95)90115-9. [DOI] [PubMed] [Google Scholar]
  16. Khan W. N., Alt F. W., Gerstein R. M., Malynn B. A., Larsson I., Rathbun G., Davidson L., Müller S., Kantor A. B., Herzenberg L. A. Defective B cell development and function in Btk-deficient mice. Immunity. 1995 Sep;3(3):283–299. doi: 10.1016/1074-7613(95)90114-0. [DOI] [PubMed] [Google Scholar]
  17. Kägi D., Ledermann B., Bürki K., Seiler P., Odermatt B., Olsen K. J., Podack E. R., Zinkernagel R. M., Hengartner H. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature. 1994 May 5;369(6475):31–37. doi: 10.1038/369031a0. [DOI] [PubMed] [Google Scholar]
  18. Kägi D., Seiler P., Pavlovic J., Ledermann B., Bürki K., Zinkernagel R. M., Hengartner H. The roles of perforin- and Fas-dependent cytotoxicity in protection against cytopathic and noncytopathic viruses. Eur J Immunol. 1995 Dec;25(12):3256–3262. doi: 10.1002/eji.1830251209. [DOI] [PubMed] [Google Scholar]
  19. Kündig T. M., Hengartner H., Zinkernagel R. M. T cell-dependent IFN-gamma exerts an antiviral effect in the central nervous system but not in peripheral solid organs. J Immunol. 1993 Mar 15;150(6):2316–2321. [PubMed] [Google Scholar]
  20. Kündig T. M., Schorle H., Bachmann M. F., Hengartner H., Zinkernagel R. M., Horak I. Immune responses in interleukin-2-deficient mice. Science. 1993 Nov 12;262(5136):1059–1061. doi: 10.1126/science.8235625. [DOI] [PubMed] [Google Scholar]
  21. Kündig T. M., Shahinian A., Kawai K., Mittrücker H. W., Sebzda E., Bachmann M. F., Mak T. W., Ohashi P. S. Duration of TCR stimulation determines costimulatory requirement of T cells. Immunity. 1996 Jul;5(1):41–52. doi: 10.1016/s1074-7613(00)80308-8. [DOI] [PubMed] [Google Scholar]
  22. Lefrancois L. Protection against lethal viral infection by neutralizing and nonneutralizing monoclonal antibodies: distinct mechanisms of action in vivo. J Virol. 1984 Jul;51(1):208–214. doi: 10.1128/jvi.51.1.208-214.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Liao X. C., Fournier S., Killeen N., Weiss A., Allison J. P., Littman D. R. Itk negatively regulates induction of T cell proliferation by CD28 costimulation. J Exp Med. 1997 Jul 21;186(2):221–228. doi: 10.1084/jem.186.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Liao X. C., Littman D. R. Altered T cell receptor signaling and disrupted T cell development in mice lacking Itk. Immunity. 1995 Dec;3(6):757–769. doi: 10.1016/1074-7613(95)90065-9. [DOI] [PubMed] [Google Scholar]
  25. Mano H., Mano K., Tang B., Koehler M., Yi T., Gilbert D. J., Jenkins N. A., Copeland N. G., Ihle J. N. Expression of a novel form of Tec kinase in hematopoietic cells and mapping of the gene to chromosome 5 near Kit. Oncogene. 1993 Feb;8(2):417–424. [PubMed] [Google Scholar]
  26. Moskophidis D., Lehmann-Grube F. Virus-induced delayed-type hypersensitivity reaction is sequentially mediated by CD8+ and CD4+ T lymphocytes. Proc Natl Acad Sci U S A. 1989 May;86(9):3291–3295. doi: 10.1073/pnas.86.9.3291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Osler A. G. Immunology of reaginic allergy: in vitro studies. Clin Exp Immunol. 1970 Jan;6(1):13–23. [PMC free article] [PubMed] [Google Scholar]
  28. Pircher H., Moskophidis D., Rohrer U., Bürki K., Hengartner H., Zinkernagel R. M. Viral escape by selection of cytotoxic T cell-resistant virus variants in vivo. Nature. 1990 Aug 16;346(6285):629–633. doi: 10.1038/346629a0. [DOI] [PubMed] [Google Scholar]
  29. Puddington L., Bevan M. J., Rose J. K., Lefrançois L. N protein is the predominant antigen recognized by vesicular stomatitis virus-specific cytotoxic T cells. J Virol. 1986 Nov;60(2):708–717. doi: 10.1128/jvi.60.2.708-717.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ramshaw I., Ruby J., Ramsay A., Ada G., Karupiah G. Expression of cytokines by recombinant vaccinia viruses: a model for studying cytokines in virus infections in vivo. Immunol Rev. 1992 Jun;127:157–182. doi: 10.1111/j.1600-065x.1992.tb01413.x. [DOI] [PubMed] [Google Scholar]
  31. Shahinian A., Pfeffer K., Lee K. P., Kündig T. M., Kishihara K., Wakeham A., Kawai K., Ohashi P. S., Thompson C. B., Mak T. W. Differential T cell costimulatory requirements in CD28-deficient mice. Science. 1993 Jul 30;261(5121):609–612. doi: 10.1126/science.7688139. [DOI] [PubMed] [Google Scholar]
  32. Sprent J., Gao E. K., Webb S. R. T cell reactivity to MHC molecules: immunity versus tolerance. Science. 1990 Jun 15;248(4961):1357–1363. doi: 10.1126/science.1694041. [DOI] [PubMed] [Google Scholar]
  33. Tanaka N., Asao H., Ohtani K., Nakamura M., Sugamura K. A novel human tyrosine kinase gene inducible in T cells by interleukin 2. FEBS Lett. 1993 Jun 7;324(1):1–5. doi: 10.1016/0014-5793(93)81520-a. [DOI] [PubMed] [Google Scholar]
  34. Tsukada S., Rawlings D. J., Witte O. N. Role of Bruton's tyrosine kinase in immunodeficiency. Curr Opin Immunol. 1994 Aug;6(4):623–630. doi: 10.1016/0952-7915(94)90151-1. [DOI] [PubMed] [Google Scholar]
  35. Van Bleek G. M., Nathenson S. G. Isolation of an endogenously processed immunodominant viral peptide from the class I H-2Kb molecule. Nature. 1990 Nov 15;348(6298):213–216. doi: 10.1038/348213a0. [DOI] [PubMed] [Google Scholar]
  36. Vetrie D., Vorechovský I., Sideras P., Holland J., Davies A., Flinter F., Hammarström L., Kinnon C., Levinsky R., Bobrow M. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature. 1993 Jan 21;361(6409):226–233. doi: 10.1038/361226a0. [DOI] [PubMed] [Google Scholar]
  37. Weiss A., Littman D. R. Signal transduction by lymphocyte antigen receptors. Cell. 1994 Jan 28;76(2):263–274. doi: 10.1016/0092-8674(94)90334-4. [DOI] [PubMed] [Google Scholar]
  38. Yamada N., Kawakami Y., Kimura H., Fukamachi H., Baier G., Altman A., Kato T., Inagaki Y., Kawakami T. Structure and expression of novel protein-tyrosine kinases, Emb and Emt, in hematopoietic cells. Biochem Biophys Res Commun. 1993 Apr 15;192(1):231–240. doi: 10.1006/bbrc.1993.1404. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES