Abstract
Luteoviruses and the luteovirus-like pea enation mosaic virus (PEMV; genus Enamovirus) are transmitted by aphids in a circulative, nonreplicative manner. Acquired virus particles persist for several weeks in the aphid hemolymph, in which a GroEL homolog, produced by the primary endosymbiont of the aphid, is abundantly present. Six subgroup II luteoviruses and PEMV displayed a specific but differential affinity for Escherichia coli GroEL and GroEL homologs isolated from the endosymbiotic bacteria of both vector and nonvector aphid species. These observations suggest that the basic virus-binding capacity resides in a conserved region of the GroEL molecule, although other GroEL domains may influence the efficiency of binding. Purified luteovirus and enamovirus particles contain a major 22-kDa coat protein (CP) and lesser amounts of an approximately 54-kDa readthrough protein, expressed by translational readthrough of the CP into the adjacent open reading frame. Beet western yellows luteovirus (BWYV) mutants devoid of the readthrough domain (RTD) did not bind to Buchnera GroEL, demonstrating that the RTD (and not the highly conserved CP) contains the determinants for GroEL binding. In vivo studies showed that virions of these BWYV mutants were significantly less persistent in the aphid hemolymph than were virions containing the readthrough protein. These data suggest that the Buchnera GroEL-RTD interaction protects the virus from rapid degradation in the aphid. Sequence comparison analysis of the RTDs of different luteoviruses and PEMV identified conserved residues potentially important in the interaction with Buchnera GroEL.
Full Text
The Full Text of this article is available as a PDF (361.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Azem A., Kessel M., Goloubinoff P. Characterization of a functional GroEL14(GroES7)2 chaperonin hetero-oligomer. Science. 1994 Jul 29;265(5172):653–656. doi: 10.1126/science.7913553. [DOI] [PubMed] [Google Scholar]
- Bahner I., Lamb J., Mayo M. A., Hay R. T. Expression of the genome of potato leafroll virus: readthrough of the coat protein termination codon in vivo. J Gen Virol. 1990 Oct;71(Pt 10):2251–2256. doi: 10.1099/0022-1317-71-10-2251. [DOI] [PubMed] [Google Scholar]
- Braig K., Otwinowski Z., Hegde R., Boisvert D. C., Joachimiak A., Horwich A. L., Sigler P. B. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature. 1994 Oct 13;371(6498):578–586. doi: 10.1038/371578a0. [DOI] [PubMed] [Google Scholar]
- Braig K., Simon M., Furuya F., Hainfeld J. F., Horwich A. L. A polypeptide bound by the chaperonin groEL is localized within a central cavity. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3978–3982. doi: 10.1073/pnas.90.9.3978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brault V., van den Heuvel J. F., Verbeek M., Ziegler-Graff V., Reutenauer A., Herrbach E., Garaud J. C., Guilley H., Richards K., Jonard G. Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74. EMBO J. 1995 Feb 15;14(4):650–659. doi: 10.1002/j.1460-2075.1995.tb07043.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruyère A., Brault V., Ziegler-Graff V., Simonis M. T., Van den Heuvel J. F., Richards K., Guilley H., Jonard G., Herrbach E. Effects of mutations in the beet western yellows virus readthrough protein on its expression and packaging and on virus accumulation, symptoms, and aphid transmission. Virology. 1997 Apr 14;230(2):323–334. doi: 10.1006/viro.1997.8476. [DOI] [PubMed] [Google Scholar]
- Buchner J., Schmidt M., Fuchs M., Jaenicke R., Rudolph R., Schmid F. X., Kiefhaber T. GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry. 1991 Feb 12;30(6):1586–1591. doi: 10.1021/bi00220a020. [DOI] [PubMed] [Google Scholar]
- Chay C. A., Gunasinge U. B., Dinesh-Kumar S. P., Miller W. A., Gray S. M. Aphid transmission and systemic plant infection determinants of barley yellow dwarf luteovirus-PAV are contained in the coat protein readthrough domain and 17-kDa protein, respectively. Virology. 1996 May 1;219(1):57–65. doi: 10.1006/viro.1996.0222. [DOI] [PubMed] [Google Scholar]
- Chen S., Roseman A. M., Hunter A. S., Wood S. P., Burston S. G., Ranson N. A., Clarke A. R., Saibil H. R. Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy. Nature. 1994 Sep 15;371(6494):261–264. doi: 10.1038/371261a0. [DOI] [PubMed] [Google Scholar]
- Chinzei Y., Minoura H. Host immunoglobulin G titre and antibody activity in haemolymph of the tick, Ornithodoros moubata. Med Vet Entomol. 1987 Oct;1(4):409–416. doi: 10.1111/j.1365-2915.1987.tb00371.x. [DOI] [PubMed] [Google Scholar]
- Demler S. A., Rucker-Feeney D. G., Skaf J. S., de Zoeten G. A. Expression and suppression of circulative aphid transmission in pea enation mosaic virus. J Gen Virol. 1997 Mar;78(Pt 3):511–523. doi: 10.1099/0022-1317-78-3-511. [DOI] [PubMed] [Google Scholar]
- Dinesh-Kumar S. P., Brault V., Miller W. A. Precise mapping and in vitro translation of a trifunctional subgenomic RNA of barley yellow dwarf virus. Virology. 1992 Apr;187(2):711–722. doi: 10.1016/0042-6822(92)90474-4. [DOI] [PubMed] [Google Scholar]
- Ellis R. J., van der Vies S. M. Molecular chaperones. Annu Rev Biochem. 1991;60:321–347. doi: 10.1146/annurev.bi.60.070191.001541. [DOI] [PubMed] [Google Scholar]
- Engel A., Hayer-Hartl M. K., Goldie K. N., Pfeifer G., Hegerl R., Müller S., da Silva A. C., Baumeister W., Hartl F. U. Functional significance of symmetrical versus asymmetrical GroEL-GroES chaperonin complexes. Science. 1995 Aug 11;269(5225):832–836. doi: 10.1126/science.7638600. [DOI] [PubMed] [Google Scholar]
- Fenton W. A., Kashi Y., Furtak K., Horwich A. L. Residues in chaperonin GroEL required for polypeptide binding and release. Nature. 1994 Oct 13;371(6498):614–619. doi: 10.1038/371614a0. [DOI] [PubMed] [Google Scholar]
- Filichkin S. A., Brumfield S., Filichkin T. P., Young M. J. In vitro interactions of the aphid endosymbiotic SymL chaperonin with barley yellow dwarf virus. J Virol. 1997 Jan;71(1):569–577. doi: 10.1128/jvi.71.1.569-577.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Filichkin S. A., Lister R. M., McGrath P. F., Young M. J. In vivo expression and mutational analysis of the barley yellow dwarf virus readthrough gene. Virology. 1994 Nov 15;205(1):290–299. doi: 10.1006/viro.1994.1645. [DOI] [PubMed] [Google Scholar]
- Goloubinoff P., Christeller J. T., Gatenby A. A., Lorimer G. H. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfoleded state depends on two chaperonin proteins and Mg-ATP. Nature. 1989 Dec 21;342(6252):884–889. doi: 10.1038/342884a0. [DOI] [PubMed] [Google Scholar]
- Guilley H., Richards K. E., Jonard G. Nucleotide sequence of beet mild yellowing virus RNA. Arch Virol. 1995;140(6):1109–1118. doi: 10.1007/BF01315419. [DOI] [PubMed] [Google Scholar]
- Guilley H., Wipf-Scheibel C., Richards K., Lecoq H., Jonard G. Nucleotide sequence of cucurbit aphid-borne yellows luteovirus. Virology. 1994 Aug 1;202(2):1012–1017. doi: 10.1006/viro.1994.1429. [DOI] [PubMed] [Google Scholar]
- Hartl F. U. Molecular chaperones in cellular protein folding. Nature. 1996 Jun 13;381(6583):571–579. doi: 10.1038/381571a0. [DOI] [PubMed] [Google Scholar]
- Hayer-Hartl M. K., Ewbank J. J., Creighton T. E., Hartl F. U. Conformational specificity of the chaperonin GroEL for the compact folding intermediates of alpha-lactalbumin. EMBO J. 1994 Jul 1;13(13):3192–3202. doi: 10.1002/j.1460-2075.1994.tb06618.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jolly C. A., Mayo M. A. Changes in the amino acid sequence of the coat protein readthrough domain of potato leafroll luteovirus affect the formation of an epitope and aphid transmission. Virology. 1994 May 15;201(1):182–185. doi: 10.1006/viro.1994.1283. [DOI] [PubMed] [Google Scholar]
- Kakeda K., Ishikawa H. Molecular chaperon produced by an intracellular symbiont. J Biochem. 1991 Oct;110(4):583–587. doi: 10.1093/oxfordjournals.jbchem.a123623. [DOI] [PubMed] [Google Scholar]
- Khandekar S. S., Bettencourt B. M., Kelley K. C., Recny M. A. A simple and rapid method for the purification of GroEL, an Escherichia coli homolog of the heat shock protein 60 family of molecular chaperonins. Protein Expr Purif. 1993 Dec;4(6):580–584. doi: 10.1006/prep.1993.1076. [DOI] [PubMed] [Google Scholar]
- Landry S. J., Jordan R., McMacken R., Gierasch L. M. Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Nature. 1992 Jan 30;355(6359):455–457. doi: 10.1038/355455a0. [DOI] [PubMed] [Google Scholar]
- Langer T., Pfeifer G., Martin J., Baumeister W., Hartl F. U. Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J. 1992 Dec;11(13):4757–4765. doi: 10.1002/j.1460-2075.1992.tb05581.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lecker S., Lill R., Ziegelhoffer T., Georgopoulos C., Bassford P. J., Jr, Kumamoto C. A., Wickner W. Three pure chaperone proteins of Escherichia coli--SecB, trigger factor and GroEL--form soluble complexes with precursor proteins in vitro. EMBO J. 1989 Sep;8(9):2703–2709. doi: 10.1002/j.1460-2075.1989.tb08411.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leiser R. M., Ziegler-Graff V., Reutenauer A., Herrbach E., Lemaire O., Guilley H., Richards K., Jonard G. Agroinfection as an alternative to insects for infecting plants with beet western yellows luteovirus. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9136–9140. doi: 10.1073/pnas.89.19.9136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin Z., Schwartz F. P., Eisenstein E. The hydrophobic nature of GroEL-substrate binding. J Biol Chem. 1995 Jan 20;270(3):1011–1014. doi: 10.1074/jbc.270.3.1011. [DOI] [PubMed] [Google Scholar]
- Lissin N. M. In vitro dissociation of self-assembly of three chaperonin 60s: the role of ATP. FEBS Lett. 1995 Mar 13;361(1):55–60. doi: 10.1016/0014-5793(95)00151-x. [DOI] [PubMed] [Google Scholar]
- Luo G. X., Horowitz P. M. The stability of the molecular chaperonin cpn60 is affected by site-directed replacement of cysteine 518. J Biol Chem. 1994 Dec 23;269(51):32151–32154. [PubMed] [Google Scholar]
- Martin J., Langer T., Boteva R., Schramel A., Horwich A. L., Hartl F. U. Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate. Nature. 1991 Jul 4;352(6330):36–42. doi: 10.1038/352036a0. [DOI] [PubMed] [Google Scholar]
- Mayhew M., da Silva A. C., Martin J., Erdjument-Bromage H., Tempst P., Hartl F. U. Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature. 1996 Feb 1;379(6564):420–426. doi: 10.1038/379420a0. [DOI] [PubMed] [Google Scholar]
- Mayo M. A., Ziegler-Graff V. Molecular biology of luteoviruses. Adv Virus Res. 1996;46:413–460. doi: 10.1016/s0065-3527(08)60077-9. [DOI] [PubMed] [Google Scholar]
- Ohtaka C., Nakamura H., Ishikawa H. Structures of chaperonins from an intracellular symbiont and their functional expression in Escherichia coli groE mutants. J Bacteriol. 1992 Mar;174(6):1869–1874. doi: 10.1128/jb.174.6.1869-1874.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ourth D. D., Renis H. E. Antiviral melanization reaction of Heliothis virescens hemolymph against DNA and RNA viruses in vitro. Comp Biochem Physiol B. 1993 Jul-Aug;105(3-4):719–723. doi: 10.1016/0305-0491(93)90111-h. [DOI] [PubMed] [Google Scholar]
- ROCHOW W. F., PANG E. Aphids can acquire strains of barley yellow dwarf virus they do not transmit. Virology. 1961 Nov;15:382–384. doi: 10.1016/0042-6822(61)90371-3. [DOI] [PubMed] [Google Scholar]
- Rathjen J. P., Karageorgos L. E., Habili N., Waterhouse P. M., Symons R. H. Soybean dwarf luteovirus contains the third variant genome type in the luteovirus group. Virology. 1994 Feb;198(2):671–679. doi: 10.1006/viro.1994.1079. [DOI] [PubMed] [Google Scholar]
- Reutenauer A., Ziegler-Graff V., Lot H., Scheidecker D., Guilley H., Richards K., Jonard G. Identification of beet western yellows luteovirus genes implicated in viral replication and particle morphogenesis. Virology. 1993 Aug;195(2):692–699. doi: 10.1006/viro.1993.1420. [DOI] [PubMed] [Google Scholar]
- Rochow W. F. Barley yellow dwarf virus: phenotypic mixing and vector specificity. Science. 1970 Feb 6;167(3919):875–878. doi: 10.1126/science.167.3919.875. [DOI] [PubMed] [Google Scholar]
- Schmidt M., Buchner J. Interaction of GroE with an all-beta-protein. J Biol Chem. 1992 Aug 25;267(24):16829–16833. [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ueng P. P., Vincent J. R., Kawata E. E., Lei C. H., Lister R. M., Larkins B. A. Nucleotide sequence analysis of the genomes of the MAV-PS1 and P-PAV isolates of barley yellow dwarf virus. J Gen Virol. 1992 Feb;73(Pt 2):487–492. doi: 10.1099/0022-1317-73-2-487. [DOI] [PubMed] [Google Scholar]
- Vaughan J. A., Azad A. F. Passage of host immunoglobulin G from blood meal into hemolymph of selected mosquito species (Diptera: Culicidae). J Med Entomol. 1988 Nov;25(6):472–474. doi: 10.1093/jmedent/25.6.472. [DOI] [PubMed] [Google Scholar]
- Vaughan J. A., Wirtz R. A., do Rosario V. E., Azad A. F. Quantitation of antisporozoite immunoglobulins in the hemolymph of Anopheles stephensi after bloodfeeding. Am J Trop Med Hyg. 1990 Jan;42(1):10–16. doi: 10.4269/ajtmh.1990.42.10. [DOI] [PubMed] [Google Scholar]
- Veidt I., Bouzoubaa S. E., Leiser R. M., Ziegler-Graff V., Guilley H., Richards K., Jonard G. Synthesis of full-length transcripts of beet western yellows virus RNA: messenger properties and biological activity in protoplasts. Virology. 1992 Jan;186(1):192–200. doi: 10.1016/0042-6822(92)90073-x. [DOI] [PubMed] [Google Scholar]
- Veidt I., Lot H., Leiser M., Scheidecker D., Guilley H., Richards K., Jonard G. Nucleotide sequence of beet western yellows virus RNA. Nucleic Acids Res. 1988 Nov 11;16(21):9917–9932. doi: 10.1093/nar/16.21.9917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Viitanen P. V., Lubben T. H., Reed J., Goloubinoff P., O'Keefe D. P., Lorimer G. H. Chaperonin-facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are K+ dependent. Biochemistry. 1990 Jun 19;29(24):5665–5671. doi: 10.1021/bi00476a003. [DOI] [PubMed] [Google Scholar]
- Wang J. Y., Chay C., Gildow F. E., Gray S. M. Readthrough protein associated with virions of barley yellow dwarf luteovirus and its potential role in regulating the efficiency of aphid transmission. Virology. 1995 Feb 1;206(2):954–962. doi: 10.1006/viro.1995.1018. [DOI] [PubMed] [Google Scholar]
- Weiss C., Goloubinoff P. A mutant at position 87 of the GroEL chaperonin is affected in protein binding and ATP hydrolysis. J Biol Chem. 1995 Jun 9;270(23):13956–13960. doi: 10.1074/jbc.270.23.13956. [DOI] [PubMed] [Google Scholar]
- van den Heuvel J. F., Verbeek M., van der Wilk F. Endosymbiotic bacteria associated with circulative transmission of potato leafroll virus by Myzus persicae. J Gen Virol. 1994 Oct;75(Pt 10):2559–2565. doi: 10.1099/0022-1317-75-10-2559. [DOI] [PubMed] [Google Scholar]
- van den Heuvel J. F., de Blank C. M., Goldbach R. W., Peters D. A characterization of epitopes on potato leafroll virus coat protein. Arch Virol. 1990;115(3-4):185–197. doi: 10.1007/BF01310529. [DOI] [PubMed] [Google Scholar]
- van der Wilk F., Huisman M. J., Cornelissen B. J., Huttinga H., Goldbach R. Nucleotide sequence and organization of potato leafroll virus genomic RNA. FEBS Lett. 1989 Mar 13;245(1-2):51–56. doi: 10.1016/0014-5793(89)80190-5. [DOI] [PubMed] [Google Scholar]