Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Oct;71(10):7281–7288. doi: 10.1128/jvi.71.10.7281-7288.1997

Ambisense gene expression from recombinant rabies virus: random packaging of positive- and negative-strand ribonucleoprotein complexes into rabies virions.

S Finke 1, K K Conzelmann 1
PMCID: PMC192070  PMID: 9311803

Abstract

We have recovered from cDNA a rabies virus (RV) containing identical, transcriptionally active promoters at its genome (negative-strand) and antigenome RNA and directing efficient expression of a chloramphenicol acetyltransferase (CAT) reporter gene from the antigenome. Transcription of the antigenome CAT gene was terminated by a modified RV gene junction able to mediate transcription stop and polyadenylation but not reinitiation of downstream transcripts. While in standard RV-infected cells genome and antigenome RNAs were present in a 49:1 ratio, the ambisense virus directed synthesis of equal amounts of genome and antigenome RNA (1:1). Total replicative synthesis was reduced by a factor of less than 2, revealing an unexpectedly high level of replication activity of the transcriptionally active promoter in the absence of the parental antigenome promoter. Successful packaging of ambisense ribonucleoprotein complexes (RNPs) into virions demonstrated that the parental 5' end of the RV genome RNA does not contain putative signals required for incorporation into virions. As determined both for standard RV and ambisense RV, virus particles contained genome and antigenome RNPs in the same ratios as those present in infected cells (49:1 and 1:1, respectively), indicating indiscriminate incorporation of RNPs independent of signals in the RNA. Ambisense expression of multiple foreign genes from RV vectors may circumvent problems with transcriptional attenuation of rhabdovirus housekeeping genes.

Full Text

The Full Text of this article is available as a PDF (545.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham G., Banerjee A. K. Sequential transcription of the genes of vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1976 May;73(5):1504–1508. doi: 10.1073/pnas.73.5.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ball L. A., White C. N. Order of transcription of genes of vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1976 Feb;73(2):442–446. doi: 10.1073/pnas.73.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Banerjee A. K., Barik S. Gene expression of vesicular stomatitis virus genome RNA. Virology. 1992 Jun;188(2):417–428. doi: 10.1016/0042-6822(92)90495-b. [DOI] [PubMed] [Google Scholar]
  4. Barr J. N., Whelan S. P., Wertz G. W. Role of the intergenic dinucleotide in vesicular stomatitis virus RNA transcription. J Virol. 1997 Mar;71(3):1794–1801. doi: 10.1128/jvi.71.3.1794-1801.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bukreyev A., Camargo E., Collins P. L. Recovery of infectious respiratory syncytial virus expressing an additional, foreign gene. J Virol. 1996 Oct;70(10):6634–6641. doi: 10.1128/jvi.70.10.6634-6641.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Calain P., Roux L. Functional characterisation of the genomic and antigenomic promoters of Sendai virus. Virology. 1995 Sep 10;212(1):163–173. doi: 10.1006/viro.1995.1464. [DOI] [PubMed] [Google Scholar]
  7. Collins P. L., Mink M. A., Stec D. S. Rescue of synthetic analogs of respiratory syncytial virus genomic RNA and effect of truncations and mutations on the expression of a foreign reporter gene. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9663–9667. doi: 10.1073/pnas.88.21.9663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Conzelmann K. K., Cox J. H., Schneider L. G., Thiel H. J. Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19. Virology. 1990 Apr;175(2):485–499. doi: 10.1016/0042-6822(90)90433-r. [DOI] [PubMed] [Google Scholar]
  9. Conzelmann K. K., Cox J. H., Thiel H. J. An L (polymerase)-deficient rabies virus defective interfering particle RNA is replicated and transcribed by heterologous helper virus L proteins. Virology. 1991 Oct;184(2):655–663. doi: 10.1016/0042-6822(91)90435-e. [DOI] [PubMed] [Google Scholar]
  10. Conzelmann K. K., Meyers G. Genetic engineering of animal RNA viruses. Trends Microbiol. 1996 Oct;4(10):386–393. doi: 10.1016/0966-842X(96)10062-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Conzelmann K. K., Schnell M. Rescue of synthetic genomic RNA analogs of rabies virus by plasmid-encoded proteins. J Virol. 1994 Feb;68(2):713–719. doi: 10.1128/jvi.68.2.713-719.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dimock K., Collins P. L. Rescue of synthetic analogs of genomic RNA and replicative-intermediate RNA of human parainfluenza virus type 3. J Virol. 1993 May;67(5):2772–2778. doi: 10.1128/jvi.67.5.2772-2778.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Frolova E., Frolov I., Schlesinger S. Packaging signals in alphaviruses. J Virol. 1997 Jan;71(1):248–258. doi: 10.1128/jvi.71.1.248-258.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fuerst T. R., Niles E. G., Studier F. W., Moss B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122–8126. doi: 10.1073/pnas.83.21.8122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Garcin D., Pelet T., Calain P., Roux L., Curran J., Kolakofsky D. A highly recombinogenic system for the recovery of infectious Sendai paramyxovirus from cDNA: generation of a novel copy-back nondefective interfering virus. EMBO J. 1995 Dec 15;14(24):6087–6094. doi: 10.1002/j.1460-2075.1995.tb00299.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Iverson L. E., Rose J. K. Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription. Cell. 1981 Feb;23(2):477–484. doi: 10.1016/0092-8674(81)90143-4. [DOI] [PubMed] [Google Scholar]
  17. Kolakofsky D., Boy de la Tour E., Bruschi A. Self-annealing of Sendai virus RNA. J Virol. 1974 Jul;14(1):33–39. doi: 10.1128/jvi.14.1.33-39.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kolakofsky D., Bruschi A. Antigenomes in Sendai virions and Sendai virus-infected cells. Virology. 1975 Jul;66(1):185–191. doi: 10.1016/0042-6822(75)90189-0. [DOI] [PubMed] [Google Scholar]
  19. Kuo L., Grosfeld H., Cristina J., Hill M. G., Collins P. L. Effects of mutations in the gene-start and gene-end sequence motifs on transcription of monocistronic and dicistronic minigenomes of respiratory syncytial virus. J Virol. 1996 Oct;70(10):6892–6901. doi: 10.1128/jvi.70.10.6892-6901.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lazzarini R. A., Keene J. D., Schubert M. The origins of defective interfering particles of the negative-strand RNA viruses. Cell. 1981 Oct;26(2 Pt 2):145–154. doi: 10.1016/0092-8674(81)90298-1. [DOI] [PubMed] [Google Scholar]
  21. Leppert M., Kort L., Kolakofsky D. Further characterization of Sendai virus DI-RNAs: a model for their generation. Cell. 1977 Oct;12(2):539–552. doi: 10.1016/0092-8674(77)90130-1. [DOI] [PubMed] [Google Scholar]
  22. Mebatsion T., Schnell M. J., Cox J. H., Finke S., Conzelmann K. K. Highly stable expression of a foreign gene from rabies virus vectors. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7310–7314. doi: 10.1073/pnas.93.14.7310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mottet G., Roux L. Budding efficiency of Sendai virus nucleocapsids: influence of size and ends of the RNA. Virus Res. 1989 Oct;14(2):175–187. doi: 10.1016/0168-1702(89)90037-3. [DOI] [PubMed] [Google Scholar]
  24. Owen K. E., Kuhn R. J. Identification of a region in the Sindbis virus nucleocapsid protein that is involved in specificity of RNA encapsidation. J Virol. 1996 May;70(5):2757–2763. doi: 10.1128/jvi.70.5.2757-2763.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Park K. H., Huang T., Correia F. F., Krystal M. Rescue of a foreign gene by Sendai virus. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5537–5541. doi: 10.1073/pnas.88.13.5537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pattnaik A. K., Ball L. A., LeGrone A., Wertz G. W. The termini of VSV DI particle RNAs are sufficient to signal RNA encapsidation, replication, and budding to generate infectious particles. Virology. 1995 Jan 10;206(1):760–764. doi: 10.1016/S0042-6822(95)80005-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pelet T., Delenda C., Gubbay O., Garcin D., Kolakofsky D. Partial characterization of a Sendai virus replication promoter and the rule of six. Virology. 1996 Oct 15;224(2):405–414. doi: 10.1006/viro.1996.0547. [DOI] [PubMed] [Google Scholar]
  28. Perrault J. Origin and replication of defective interfering particles. Curr Top Microbiol Immunol. 1981;93:151–207. doi: 10.1007/978-3-642-68123-3_7. [DOI] [PubMed] [Google Scholar]
  29. Robinson W. S. Self-annealing of subgroup 2 myxovirus RNAs. Nature. 1970 Mar 7;225(5236):944–945. doi: 10.1038/225944a0. [DOI] [PubMed] [Google Scholar]
  30. Schnell M. J., Buonocore L., Whitt M. A., Rose J. K. The minimal conserved transcription stop-start signal promotes stable expression of a foreign gene in vesicular stomatitis virus. J Virol. 1996 Apr;70(4):2318–2323. doi: 10.1128/jvi.70.4.2318-2323.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schnell M. J., Mebatsion T., Conzelmann K. K. Infectious rabies viruses from cloned cDNA. EMBO J. 1994 Sep 15;13(18):4195–4203. doi: 10.1002/j.1460-2075.1994.tb06739.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sidhu M. S., Chan J., Kaelin K., Spielhofer P., Radecke F., Schneider H., Masurekar M., Dowling P. C., Billeter M. A., Udem S. A. Rescue of synthetic measles virus minireplicons: measles genomic termini direct efficient expression and propagation of a reporter gene. Virology. 1995 Apr 20;208(2):800–807. doi: 10.1006/viro.1995.1215. [DOI] [PubMed] [Google Scholar]
  33. Soria M., Little S. P., Huang A. S. Characterization of vesicular stomatitis virus nucleocapsids. I. Complementary 40 S RNA molecules in nucleocapsids. Virology. 1974 Sep;61(1):270–280. doi: 10.1016/0042-6822(74)90261-x. [DOI] [PubMed] [Google Scholar]
  34. Takacs A. M., Banerjee A. K. Inhibition of vesicular stomatitis virus in cells constitutively expressing an antisense RNA targeted against the virus RNA polymerase gene. J Gen Virol. 1997 Jan;78(Pt 1):125–129. doi: 10.1099/0022-1317-78-1-125. [DOI] [PubMed] [Google Scholar]
  35. Tapparel C., Roux L. The efficiency of Sendai virus genome replication: the importance of the RNA primary sequence independent of terminal complementarity. Virology. 1996 Nov 1;225(1):163–171. doi: 10.1006/viro.1996.0584. [DOI] [PubMed] [Google Scholar]
  36. Vidal S., Kolakofsky D. Modified model for the switch from Sendai virus transcription to replication. J Virol. 1989 May;63(5):1951–1958. doi: 10.1128/jvi.63.5.1951-1958.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wertz G. W., Whelan S., LeGrone A., Ball L. A. Extent of terminal complementarity modulates the balance between transcription and replication of vesicular stomatitis virus RNA. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8587–8591. doi: 10.1073/pnas.91.18.8587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Woo K., Joo M., Narayanan K., Kim K. H., Makino S. Murine coronavirus packaging signal confers packaging to nonviral RNA. J Virol. 1997 Jan;71(1):824–827. doi: 10.1128/jvi.71.1.824-827.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES