Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Oct;71(10):7393–7403. doi: 10.1128/jvi.71.10.7393-7403.1997

Inhibition of parvovirus minute virus of mice replication by a peptide involved in the oligomerization of nonstructural protein NS1.

A Pujol 1, L Deleu 1, J P Nüesch 1, C Cziepluch 1, J C Jauniaux 1, J Rommelaere 1
PMCID: PMC192085  PMID: 9311818

Abstract

The large nonstructural protein NS1 of the minute virus of mice and other parvoviruses is involved in essential steps of the viral life cycle, such as DNA replication and transcriptional regulation, and is a major contributor to the toxic effect on host cells. Various biochemical functions, such as ATP binding, ATPase, site-specific DNA binding and nicking, and helicase activities, have been assigned to NS1. Homo-oligomerization is a prerequisite for a number of proteins to be fully functional. In particular, helicases generally act as homo-oligomers. Indirect evidence of NS1 self-association has been recently obtained by a nuclear cotransport assay (J. P. Nüesch and P. Tattersall, Virology 196:637-651, 1993). In order to demonstrate the oligomerizing property of NS1 in a direct way and localize the protein region(s) involved, the yeast two-hybrid system was used in combination with deletion mutagenesis across the whole NS1 molecule, followed by high-resolution mapping of the homo-oligomerization domain by a peptide enzyme-linked immunosorbent assay method. This study led to the identification of a distinct NS1 peptide that contains a bipartite domain involved in NS1 oligomerization. Furthermore, this isolated peptide was found to act as a specific competitive inhibitor and suppress NS1 helicase activity in vitro and parvovirus DNA replication in vivo, arguing for the involvement of NS1 oligomerization in these processes. Our results point to drug targeting of oligomerization motifs of viral regulatory proteins as a potentially useful antiviral strategy.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. B., Walberg M. W., Edwards M. C., Elledge S. J. Finding prospective partners in the library: the two-hybrid system and phage display find a match. Trends Biochem Sci. 1995 Dec;20(12):511–516. doi: 10.1016/s0968-0004(00)89119-7. [DOI] [PubMed] [Google Scholar]
  2. Astell C. R., Mol C. D., Anderson W. F. Structural and functional homology of parvovirus and papovavirus polypeptides. J Gen Virol. 1987 Mar;68(Pt 3):885–893. doi: 10.1099/0022-1317-68-3-885. [DOI] [PubMed] [Google Scholar]
  3. Athanasiadis A., Vlassi M., Kotsifaki D., Tucker P. A., Wilson K. S., Kokkinidis M. Crystal structure of PvuII endonuclease reveals extensive structural homologies to EcoRV. Nat Struct Biol. 1994 Jul;1(7):469–475. doi: 10.1038/nsb0794-469. [DOI] [PubMed] [Google Scholar]
  4. Baldauf A. Q., Willwand K., Mumtsidu E., Nüesch J. P., Rommelaere J. Specific initiation of replication at the right-end telomere of the closed species of minute virus of mice replicative-form DNA. J Virol. 1997 Feb;71(2):971–980. doi: 10.1128/jvi.71.2.971-980.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baler R., Dahl G., Voellmy R. Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol Cell Biol. 1993 Apr;13(4):2486–2496. doi: 10.1128/mcb.13.4.2486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berns K. I. Parvovirus replication. Microbiol Rev. 1990 Sep;54(3):316–329. doi: 10.1128/mr.54.3.316-329.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bourne Y., Arvai A. S., Bernstein S. L., Watson M. H., Reed S. I., Endicott J. E., Noble M. E., Johnson L. N., Tainer J. A. Crystal structure of the cell cycle-regulatory protein suc1 reveals a beta-hinge conformational switch. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10232–10236. doi: 10.1073/pnas.92.22.10232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Breeden L., Nasmyth K. Regulation of the yeast HO gene. Cold Spring Harb Symp Quant Biol. 1985;50:643–650. doi: 10.1101/sqb.1985.050.01.078. [DOI] [PubMed] [Google Scholar]
  9. Brockhaus K., Plaza S., Pintel D. J., Rommelaere J., Salomé N. Nonstructural proteins NS2 of minute virus of mice associate in vivo with 14-3-3 protein family members. J Virol. 1996 Nov;70(11):7527–7534. doi: 10.1128/jvi.70.11.7527-7534.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Caillet-Fauquet P., Perros M., Brandenburger A., Spegelaere P., Rommelaere J. Programmed killing of human cells by means of an inducible clone of parvoviral genes encoding non-structural proteins. EMBO J. 1990 Sep;9(9):2989–2995. doi: 10.1002/j.1460-2075.1990.tb07491.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Christensen J., Cotmore S. F., Tattersall P. Minute virus of mice transcriptional activator protein NS1 binds directly to the transactivation region of the viral P38 promoter in a strictly ATP-dependent manner. J Virol. 1995 Sep;69(9):5422–5430. doi: 10.1128/jvi.69.9.5422-5430.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cotmore S. F., Christensen J., Nüesch J. P., Tattersall P. The NS1 polypeptide of the murine parvovirus minute virus of mice binds to DNA sequences containing the motif [ACCA]2-3. J Virol. 1995 Mar;69(3):1652–1660. doi: 10.1128/jvi.69.3.1652-1660.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cotmore S. F., Sturzenbecker L. J., Tattersall P. The autonomous parvovirus MVM encodes two nonstructural proteins in addition to its capsid polypeptides. Virology. 1983 Sep;129(2):333–343. doi: 10.1016/0042-6822(83)90172-1. [DOI] [PubMed] [Google Scholar]
  14. Cotmore S. F., Tattersall P. Alternate splicing in a parvoviral nonstructural gene links a common amino-terminal sequence to downstream domains which confer radically different localization and turnover characteristics. Virology. 1990 Aug;177(2):477–487. doi: 10.1016/0042-6822(90)90512-p. [DOI] [PubMed] [Google Scholar]
  15. Cotmore S. F., Tattersall P. Organization of nonstructural genes of the autonomous parvovirus minute virus of mice. J Virol. 1986 Jun;58(3):724–732. doi: 10.1128/jvi.58.3.724-732.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cotmore S. F., Tattersall P. The NS-1 polypeptide of minute virus of mice is covalently attached to the 5' termini of duplex replicative-form DNA and progeny single strands. J Virol. 1988 Mar;62(3):851–860. doi: 10.1128/jvi.62.3.851-860.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cotmore S. F., Tattersall P. The NS-1 polypeptide of the autonomous parvovirus MVM is a nuclear phosphoprotein. Virus Res. 1986 May;4(3):243–250. doi: 10.1016/0168-1702(86)90003-1. [DOI] [PubMed] [Google Scholar]
  18. Cotmore S. F., Tattersall P. The autonomously replicating parvoviruses of vertebrates. Adv Virus Res. 1987;33:91–174. doi: 10.1016/s0065-3527(08)60317-6. [DOI] [PubMed] [Google Scholar]
  19. Doerig C., Hirt B., Antonietti J. P., Beard P. Nonstructural protein of parvoviruses B19 and minute virus of mice controls transcription. J Virol. 1990 Jan;64(1):387–396. doi: 10.1128/jvi.64.1.387-396.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dohmen R. J., Strasser A. W., Höner C. B., Hollenberg C. P. An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast. 1991 Oct;7(7):691–692. doi: 10.1002/yea.320070704. [DOI] [PubMed] [Google Scholar]
  21. Faisst S., Faisst S. R., Dupressoir T., Plaza S., Pujol A., Jauniaux J. C., Rhode S. L., Rommelaere J. Isolation of a fully infectious variant of parvovirus H-1 supplanting the standard strain in human cells. J Virol. 1995 Jul;69(7):4538–4543. doi: 10.1128/jvi.69.7.4538-4543.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gounari F., De Francesco R., Schmitt J., van der Vliet P., Cortese R., Stunnenberg H. Amino-terminal domain of NF1 binds to DNA as a dimer and activates adenovirus DNA replication. EMBO J. 1990 Feb;9(2):559–566. doi: 10.1002/j.1460-2075.1990.tb08143.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gu M. L., Chen F. X., Rhode S. L. Parvovirus H-1 P38 promoter requires the trans-activation region (tar), an SP1 site, and a TATA box for full activity. Virology. 1992 Mar;187(1):10–17. doi: 10.1016/0042-6822(92)90290-6. [DOI] [PubMed] [Google Scholar]
  24. Hall P. A., Kearsey J. M., Coates P. J., Norman D. G., Warbrick E., Cox L. S. Characterisation of the interaction between PCNA and Gadd45. Oncogene. 1995 Jun 15;10(12):2427–2433. [PubMed] [Google Scholar]
  25. Jindal H. K., Yong C. B., Wilson G. M., Tam P., Astell C. R. Mutations in the NTP-binding motif of minute virus of mice (MVM) NS-1 protein uncouple ATPase and DNA helicase functions. J Biol Chem. 1994 Feb 4;269(5):3283–3289. [PubMed] [Google Scholar]
  26. Jongeneel C. V., Sahli R., McMaster G. K., Hirt B. A precise map of splice junctions in the mRNAs of minute virus of mice, an autonomous parvovirus. J Virol. 1986 Sep;59(3):564–573. doi: 10.1128/jvi.59.3.564-573.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Keegan L., Gill G., Ptashne M. Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. Science. 1986 Feb 14;231(4739):699–704. doi: 10.1126/science.3080805. [DOI] [PubMed] [Google Scholar]
  28. Kyöstiö S. R., Owens R. A. Identification of mutant adeno-associated virus Rep proteins which are dominant-negative for DNA helicase activity. Biochem Biophys Res Commun. 1996 Mar 18;220(2):294–299. doi: 10.1006/bbrc.1996.0399. [DOI] [PubMed] [Google Scholar]
  29. Lazazzera B. A., Bates D. M., Kiley P. J. The activity of the Escherichia coli transcription factor FNR is regulated by a change in oligomeric state. Genes Dev. 1993 Oct;7(10):1993–2005. doi: 10.1101/gad.7.10.1993. [DOI] [PubMed] [Google Scholar]
  30. Legendre D., Rommelaere J. Targeting of promoters for trans activation by a carboxy-terminal domain of the NS-1 protein of the parvovirus minute virus of mice. J Virol. 1994 Dec;68(12):7974–7985. doi: 10.1128/jvi.68.12.7974-7985.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Legendre D., Rommelaere J. Terminal regions of the NS-1 protein of the parvovirus minute virus of mice are involved in cytotoxicity and promoter trans inhibition. J Virol. 1992 Oct;66(10):5705–5713. doi: 10.1128/jvi.66.10.5705-5713.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mastrangelo I. A., Bezanilla M., Hansma P. K., Hough P. V., Hansma H. G. Structures of large T antigen at the origin of SV40 DNA replication by atomic force microscopy. Biophys J. 1994 Feb;66(2 Pt 1):293–298. doi: 10.1016/s0006-3495(94)80800-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mastrangelo I. A., Courey A. J., Wall J. S., Jackson S. P., Hough P. V. DNA looping and Sp1 multimer links: a mechanism for transcriptional synergism and enhancement. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5670–5674. doi: 10.1073/pnas.88.13.5670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mastrangelo I. A., Hough P. V., Wall J. S., Dodson M., Dean F. B., Hurwitz J. ATP-dependent assembly of double hexamers of SV40 T antigen at the viral origin of DNA replication. Nature. 1989 Apr 20;338(6217):658–662. doi: 10.1038/338658a0. [DOI] [PubMed] [Google Scholar]
  35. Mousset S., Ouadrhiri Y., Caillet-Fauquet P., Rommelaere J. The cytotoxicity of the autonomous parvovirus minute virus of mice nonstructural proteins in FR3T3 rat cells depends on oncogene expression. J Virol. 1994 Oct;68(10):6446–6453. doi: 10.1128/jvi.68.10.6446-6453.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Naeger L. K., Cater J., Pintel D. J. The small nonstructural protein (NS2) of the parvovirus minute virus of mice is required for efficient DNA replication and infectious virus production in a cell-type-specific manner. J Virol. 1990 Dec;64(12):6166–6175. doi: 10.1128/jvi.64.12.6166-6175.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Naeger L. K., Salomé N., Pintel D. J. NS2 is required for efficient translation of viral mRNA in minute virus of mice-infected murine cells. J Virol. 1993 Feb;67(2):1034–1043. doi: 10.1128/jvi.67.2.1034-1043.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Nüesch J. P., Cotmore S. F., Tattersall P. Expression of functional parvoviral NS1 from recombinant vaccinia virus: effects of mutations in the nucleotide-binding motif. Virology. 1992 Nov;191(1):406–416. doi: 10.1016/0042-6822(92)90202-z. [DOI] [PubMed] [Google Scholar]
  39. Nüesch J. P., Cotmore S. F., Tattersall P. Sequence motifs in the replicator protein of parvovirus MVM essential for nicking and covalent attachment to the viral origin: identification of the linking tyrosine. Virology. 1995 May 10;209(1):122–135. doi: 10.1006/viro.1995.1236. [DOI] [PubMed] [Google Scholar]
  40. Nüesch J. P., Tattersall P. Nuclear targeting of the parvoviral replicator molecule NS1: evidence for self-association prior to nuclear transport. Virology. 1993 Oct;196(2):637–651. doi: 10.1006/viro.1993.1520. [DOI] [PubMed] [Google Scholar]
  41. Oh E. Y., Claassen L., Thiagalingam S., Mazur S., Grossman L. ATPase activity of the UvrA and UvrAB protein complexes of the Escherichia coli UvrABC endonuclease. Nucleic Acids Res. 1989 Jun 12;17(11):4145–4159. doi: 10.1093/nar/17.11.4145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Pagano M., Pepperkok R., Verde F., Ansorge W., Draetta G. Cyclin A is required at two points in the human cell cycle. EMBO J. 1992 Mar;11(3):961–971. doi: 10.1002/j.1460-2075.1992.tb05135.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Parge H. E., Arvai A. S., Murtari D. J., Reed S. I., Tainer J. A. Human CksHs2 atomic structure: a role for its hexameric assembly in cell cycle control. Science. 1993 Oct 15;262(5132):387–395. doi: 10.1126/science.8211159. [DOI] [PubMed] [Google Scholar]
  44. Pintel D., Dadachanji D., Astell C. R., Ward D. C. The genome of minute virus of mice, an autonomous parvovirus, encodes two overlapping transcription units. Nucleic Acids Res. 1983 Feb 25;11(4):1019–1038. doi: 10.1093/nar/11.4.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Pál G., Szilágyi L., Gráf L. Stable monomeric form of an originally dimeric serine proteinase inhibitor, ecotin, was constructed via site directed mutagenesis. FEBS Lett. 1996 May 6;385(3):165–170. doi: 10.1016/0014-5793(96)00376-6. [DOI] [PubMed] [Google Scholar]
  46. Rhode S. L., 3rd, Richard S. M. Characterization of the trans-activation-responsive element of the parvovirus H-1 P38 promoter. J Virol. 1987 Sep;61(9):2807–2815. doi: 10.1128/jvi.61.9.2807-2815.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Rhode S. L., 3rd trans-Activation of parvovirus P38 promoter by the 76K noncapsid protein. J Virol. 1985 Sep;55(3):886–889. doi: 10.1128/jvi.55.3.886-889.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Riede I., Schwarz H., Jähnig F. Predicted structure of tail-fiber proteins of T-even type phages. FEBS Lett. 1987 May 4;215(1):145–150. doi: 10.1016/0014-5793(87)80130-8. [DOI] [PubMed] [Google Scholar]
  49. Serizawa H., Conaway J. W., Conaway R. C. An oligomeric form of the large subunit of transcription factor (TF) IIE activates phosphorylation of the RNA polymerase II carboxyl-terminal domain by TFIIH. J Biol Chem. 1994 Aug 12;269(32):20750–20756. [PubMed] [Google Scholar]
  50. Skelton N. J., Aspiras F., Ogez J., Schall T. J. Proton NMR assignments and solution conformation of RANTES, a chemokine of the C-C type. Biochemistry. 1995 Apr 25;34(16):5329–5342. doi: 10.1021/bi00016a004. [DOI] [PubMed] [Google Scholar]
  51. Spegelaere P., Cornelis J. J., Tuynder M., Rommelaere J. Lack of a detectable effect of capsid proteins on the cell-dependent activity of parvovirus MVMp promoters. Res Virol. 1994 Jan-Feb;145(1):5–12. doi: 10.1016/s0923-2516(07)80001-x. [DOI] [PubMed] [Google Scholar]
  52. Tenenbaum L., Dupont F., Spegelaere P., Zentilin L., Norio P., Giacca M., Riva S., Falaschi A., Rommelaere J. Inhibition of heterologous DNA replication by the MVMp nonstructural NS-1 protein: identification of a target sequence. Virology. 1993 Dec;197(2):630–641. doi: 10.1006/viro.1993.1638. [DOI] [PubMed] [Google Scholar]
  53. Wang P., Reed M., Wang Y., Mayr G., Stenger J. E., Anderson M. E., Schwedes J. F., Tegtmeyer P. p53 domains: structure, oligomerization, and transformation. Mol Cell Biol. 1994 Aug;14(8):5182–5191. doi: 10.1128/mcb.14.8.5182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Warbrick E., Lane D. P., Glover D. M., Cox L. S. A small peptide inhibitor of DNA replication defines the site of interaction between the cyclin-dependent kinase inhibitor p21WAF1 and proliferating cell nuclear antigen. Curr Biol. 1995 Mar 1;5(3):275–282. doi: 10.1016/s0960-9822(95)00058-3. [DOI] [PubMed] [Google Scholar]
  55. West S. C. DNA helicases: new breeds of translocating motors and molecular pumps. Cell. 1996 Jul 26;86(2):177–180. doi: 10.1016/s0092-8674(00)80088-4. [DOI] [PubMed] [Google Scholar]
  56. Wilson G. M., Jindal H. K., Yeung D. E., Chen W., Astell C. R. Expression of minute virus of mice major nonstructural protein in insect cells: purification and identification of ATPase and helicase activities. Virology. 1991 Nov;185(1):90–98. doi: 10.1016/0042-6822(91)90757-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES