Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Oct;71(10):7704–7710. doi: 10.1128/jvi.71.10.7704-7710.1997

Incorporation of functional human immunodeficiency virus type 1 integrase into virions independent of the Gag-Pol precursor protein.

H Liu 1, X Wu 1, H Xiao 1, J A Conway 1, J C Kappes 1
PMCID: PMC192121  PMID: 9311854

Abstract

Retroviral integrase (IN) is expressed and incorporated into virions as part of the Gag-Pol polyprotein precursor. IN catalyzes integration of the proviral DNA into host cell chromosomes during the early stages of the virus life cycle, and as a component of Gag-Pol, it is involved in virion morphogenesis during late stages. It is unknown whether the scheme, conserved among retroviruses, for expressing and incorporating IN as a component of the Gag-Pol precursor protein is necessary for its function in the infected cell after viral entry. We have developed human immunodeficiency virus (HIV) virion-associated accessory proteins (Vpr and Vpx) as vehicles to deliver both foreign and viral proteins into the virus particle by their expression in trans as heterologous fusion proteins (X. Wu, et al., J. Virol. 69:3389-3398, 1995; X. Wu, et al., J. Virol. 70:3378-3384, 1996; X. Wu, et al., EMBO J. 16:5113-5122, 1977). To analyze IN function independent of its expression as a part of Gag-Pol, we expressed and incorporated IN into HIV type 1 (HIV-1) virions in trans as a fusion partner of Vpr (Vpr-IN). Our results demonstrate that the Vpr-IN fusion protein is efficiently incorporated into virions and then processed by the viral protease to liberate the IN protein. Virus derived from IN-minus provirus is noninfectious. However, this defect is overcome by trans complementation with the Vpr-IN fusion protein. Moreover, complemented virions are able to replicate through a complete cycle of infection, including formation of the provirus (integration). These results show, for the first time, that full IN function can be provided in trans, independent of its expression and incorporation into virions as a component of Gag-Pol. This finding also indicates that the IN domain of Gag-Pol is not required for the formation of infectious virions when IN is provided in trans. The ability to incorporate functional IN into retroviral particles in trans will provide unique opportunities to explore the function of this critical enzyme in a biologically relevant context, i.e., in infected cells as part of the nucleoprotein/preintegration complex.

Full Text

The Full Text of this article is available as a PDF (308.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansari-Lari M. A., Donehower L. A., Gibbs R. A. Analysis of human immunodeficiency virus type 1 integrase mutants. Virology. 1995 Aug 1;211(1):332–335. doi: 10.1006/viro.1995.1412. [DOI] [PubMed] [Google Scholar]
  2. Ansari-Lari M. A., Gibbs R. A. Analysis of HIV type 1 reverse transcriptase expression in a human cell line. AIDS Res Hum Retroviruses. 1994 Sep;10(9):1117–1124. doi: 10.1089/aid.1994.10.1117. [DOI] [PubMed] [Google Scholar]
  3. Brown P. O., Bowerman B., Varmus H. E., Bishop J. M. Correct integration of retroviral DNA in vitro. Cell. 1987 May 8;49(3):347–356. doi: 10.1016/0092-8674(87)90287-x. [DOI] [PubMed] [Google Scholar]
  4. Bukovsky A., Göttlinger H. Lack of integrase can markedly affect human immunodeficiency virus type 1 particle production in the presence of an active viral protease. J Virol. 1996 Oct;70(10):6820–6825. doi: 10.1128/jvi.70.10.6820-6825.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bukrinsky M. I., Sharova N., McDonald T. L., Pushkarskaya T., Tarpley W. G., Stevenson M. Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6125–6129. doi: 10.1073/pnas.90.13.6125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ellison V., Abrams H., Roe T., Lifson J., Brown P. Human immunodeficiency virus integration in a cell-free system. J Virol. 1990 Jun;64(6):2711–2715. doi: 10.1128/jvi.64.6.2711-2715.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Engelman A., Englund G., Orenstein J. M., Martin M. A., Craigie R. Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J Virol. 1995 May;69(5):2729–2736. doi: 10.1128/jvi.69.5.2729-2736.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Farnet C. M., Bushman F. D. HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell. 1997 Feb 21;88(4):483–492. doi: 10.1016/s0092-8674(00)81888-7. [DOI] [PubMed] [Google Scholar]
  9. Farnet C. M., Haseltine W. A. Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. J Virol. 1991 Apr;65(4):1910–1915. doi: 10.1128/jvi.65.4.1910-1915.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Farnet C. M., Haseltine W. A. Integration of human immunodeficiency virus type 1 DNA in vitro. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4164–4168. doi: 10.1073/pnas.87.11.4164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gallay P., Swingler S., Song J., Bushman F., Trono D. HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase. Cell. 1995 Nov 17;83(4):569–576. doi: 10.1016/0092-8674(95)90097-7. [DOI] [PubMed] [Google Scholar]
  12. Ghosh S. K., Fultz P. N., Keddie E., Saag M. S., Sharp P. M., Hahn B. H., Shaw G. M. A molecular clone of HIV-1 tropic and cytopathic for human and chimpanzee lymphocytes. Virology. 1993 Jun;194(2):858–864. doi: 10.1006/viro.1993.1331. [DOI] [PubMed] [Google Scholar]
  13. Goff S. P. Retroviral reverse transcriptase: synthesis, structure, and function. J Acquir Immune Defic Syndr. 1990;3(8):817–831. [PubMed] [Google Scholar]
  14. Heinzinger N. K., Bukrinsky M. I., Haggerty S. A., Ragland A. M., Kewalramani V., Lee M. A., Gendelman H. E., Ratner L., Stevenson M., Emerman M. The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7311–7315. doi: 10.1073/pnas.91.15.7311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jacks T., Power M. D., Masiarz F. R., Luciw P. A., Barr P. J., Varmus H. E. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature. 1988 Jan 21;331(6153):280–283. doi: 10.1038/331280a0. [DOI] [PubMed] [Google Scholar]
  16. Jackson J. B., Kwok S. Y., Sninsky J. J., Hopsicker J. S., Sannerud K. J., Rhame F. S., Henry K., Simpson M., Balfour H. H., Jr Human immunodeficiency virus type 1 detected in all seropositive symptomatic and asymptomatic individuals. J Clin Microbiol. 1990 Jan;28(1):16–19. doi: 10.1128/jcm.28.1.16-19.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Katz R. A., Skalka A. M. The retroviral enzymes. Annu Rev Biochem. 1994;63:133–173. doi: 10.1146/annurev.bi.63.070194.001025. [DOI] [PubMed] [Google Scholar]
  18. Kimpton J., Emerman M. Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene. J Virol. 1992 Apr;66(4):2232–2239. doi: 10.1128/jvi.66.4.2232-2239.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Landau N. R., Page K. A., Littman D. R. Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range. J Virol. 1991 Jan;65(1):162–169. doi: 10.1128/jvi.65.1.162-169.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Leavitt A. D., Robles G., Alesandro N., Varmus H. E. Human immunodeficiency virus type 1 integrase mutants retain in vitro integrase activity yet fail to integrate viral DNA efficiently during infection. J Virol. 1996 Feb;70(2):721–728. doi: 10.1128/jvi.70.2.721-728.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lee Y. M., Coffin J. M. Efficient autointegration of avian retrovirus DNA in vitro. J Virol. 1990 Dec;64(12):5958–5965. doi: 10.1128/jvi.64.12.5958-5965.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Masuda T., Planelles V., Krogstad P., Chen I. S. Genetic analysis of human immunodeficiency virus type 1 integrase and the U3 att site: unusual phenotype of mutants in the zinc finger-like domain. J Virol. 1995 Nov;69(11):6687–6696. doi: 10.1128/jvi.69.11.6687-6696.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ratner L., Fisher A., Jagodzinski L. L., Mitsuya H., Liou R. S., Gallo R. C., Wong-Staal F. Complete nucleotide sequences of functional clones of the AIDS virus. AIDS Res Hum Retroviruses. 1987 Spring;3(1):57–69. doi: 10.1089/aid.1987.3.57. [DOI] [PubMed] [Google Scholar]
  24. Shin C. G., Taddeo B., Haseltine W. A., Farnet C. M. Genetic analysis of the human immunodeficiency virus type 1 integrase protein. J Virol. 1994 Mar;68(3):1633–1642. doi: 10.1128/jvi.68.3.1633-1642.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wiskerchen M., Muesing M. A. Human immunodeficiency virus type 1 integrase: effects of mutations on viral ability to integrate, direct viral gene expression from unintegrated viral DNA templates, and sustain viral propagation in primary cells. J Virol. 1995 Jan;69(1):376–386. doi: 10.1128/jvi.69.1.376-386.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wu X., Conway J. A., Kim J., Kappes J. C. Localization of the Vpx packaging signal within the C terminus of the human immunodeficiency virus type 2 Gag precursor protein. J Virol. 1994 Oct;68(10):6161–6169. doi: 10.1128/jvi.68.10.6161-6169.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wu X., Liu H., Xiao H., Conway J. A., Hunter E., Kappes J. C. Functional RT and IN incorporated into HIV-1 particles independently of the Gag/Pol precursor protein. EMBO J. 1997 Aug 15;16(16):5113–5122. doi: 10.1093/emboj/16.16.5113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wu X., Liu H., Xiao H., Conway J. A., Kappes J. C. Inhibition of human and simian immunodeficiency virus protease function by targeting Vpx-protease-mutant fusion protein into viral particles. J Virol. 1996 Jun;70(6):3378–3384. doi: 10.1128/jvi.70.6.3378-3384.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wu X., Liu H., Xiao H., Kappes J. C. Proteolytic activity of human immunodeficiency virus Vpr- and Vpx-protease fusion proteins. Virology. 1996 May 1;219(1):307–313. doi: 10.1006/viro.1996.0253. [DOI] [PubMed] [Google Scholar]
  30. Wu X., Liu H., Xiao H., Kim J., Seshaiah P., Natsoulis G., Boeke J. D., Hahn B. H., Kappes J. C. Targeting foreign proteins to human immunodeficiency virus particles via fusion with Vpr and Vpx. J Virol. 1995 Jun;69(6):3389–3398. doi: 10.1128/jvi.69.6.3389-3398.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. von Schwedler U., Song J., Aiken C., Trono D. Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J Virol. 1993 Aug;67(8):4945–4955. doi: 10.1128/jvi.67.8.4945-4955.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES