Abstract
NTPase activities in mammalian reovirus cores were examined under various conditions that permitted several new differences to be identified between strains type 1 Lang (T1L) and type 3 Dearing (T3D). One difference concerned the ratio (at pH 8.5) of ATP hydrolysis at 50 degrees C to that at 35 degrees C. A genetic analysis using T1L x T3D reassortant viruses implicated the L3 and M1 gene segments in this difference, with M1 influencing ATPase activity most strongly at high temperatures. L3 and M1 encode the core proteins lambda1 and mu2, respectively. Another difference concerned the absolute levels of GTP hydrolysis by cores at 45 degrees C and pH 6.5. A genetic analysis using T1L x T3D reassortants implicated the M1 gene as the sole determinant of this difference. The results of these experiments, coupled with previous findings (S. Noble and M. L. Nibert, J. Virol. 71:2182-2191, 1997), suggest either that a single type of NTPase in cores is strongly influenced by two different core proteins--lambda1 and mu2--or that cores contain two different types of NTPase influenced by the two proteins. The findings appear relevant for understanding the complex functions of reovirus cores in RNA synthesis and capping.
Full Text
The Full Text of this article is available as a PDF (182.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banerjee A. K., Ward R., Shatkin A. J. Initiation of reovirus mRNA synthesis in vitro. Nat New Biol. 1971 Apr 7;230(14):169–172. doi: 10.1038/newbio230169a0. [DOI] [PubMed] [Google Scholar]
- Bartlett J. A., Joklik W. K. The sequence of the reovirus serotype 3 L3 genome segment which encodes the major core protein lambda 1. Virology. 1988 Nov;167(1):31–37. doi: 10.1016/0042-6822(88)90051-7. [DOI] [PubMed] [Google Scholar]
- Bartlett N. M., Gillies S. C., Bullivant S., Bellamy A. R. Electron microscopy study of reovirus reaction cores. J Virol. 1974 Aug;14(2):315–326. doi: 10.1128/jvi.14.2.315-326.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borsa J., Grover J., Chapman J. D. Presence of nucleoside triphosphate phosphohydrolase activity in purified virions of reovirus. J Virol. 1970 Sep;6(3):295–302. doi: 10.1128/jvi.6.3.295-302.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleveland D. R., Zarbl H., Millward S. Reovirus guanylyltransferase is L2 gene product lambda 2. J Virol. 1986 Oct;60(1):307–311. doi: 10.1128/jvi.60.1.307-311.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coombs K. M., Fields B. N., Harrison S. C. Crystallization of the reovirus type 3 Dearing core. Crystal packing is determined by the lambda 2 protein. J Mol Biol. 1990 Sep 5;215(1):1–5. doi: 10.1016/s0022-2836(05)80089-0. [DOI] [PubMed] [Google Scholar]
- Coombs K. M. Identification and characterization of a double-stranded RNA- reovirus temperature-sensitive mutant defective in minor core protein mu2. J Virol. 1996 Jul;70(7):4237–4245. doi: 10.1128/jvi.70.7.4237-4245.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drayna D., Fields B. N. Activation and characterization of the reovirus transcriptase: genetic analysis. J Virol. 1982 Jan;41(1):110–118. doi: 10.1128/jvi.41.1.110-118.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fausnaugh J., Shatkin A. J. Active site localization in a viral mRNA capping enzyme. J Biol Chem. 1990 May 5;265(13):7669–7672. [PubMed] [Google Scholar]
- Furlong D. B., Nibert M. L., Fields B. N. Sigma 1 protein of mammalian reoviruses extends from the surfaces of viral particles. J Virol. 1988 Jan;62(1):246–256. doi: 10.1128/jvi.62.1.246-256.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furuichi Y., Muthukrishnan S., Tomasz J., Shatkin A. J. Mechanism of formation of reovirus mRNA 5'-terminal blocked and methylated sequence, m7GpppGmpC. J Biol Chem. 1976 Aug 25;251(16):5043–5053. [PubMed] [Google Scholar]
- Goodrich J. A., Tjian R. Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell. 1994 Apr 8;77(1):145–156. doi: 10.1016/0092-8674(94)90242-9. [DOI] [PubMed] [Google Scholar]
- Gross C. H., Shuman S. Mutational analysis of vaccinia virus nucleoside triphosphate phosphohydrolase II, a DExH box RNA helicase. J Virol. 1995 Aug;69(8):4727–4736. doi: 10.1128/jvi.69.8.4727-4736.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haller B. L., Barkon M. L., Vogler G. P., Virgin H. W., 4th Genetic mapping of reovirus virulence and organ tropism in severe combined immunodeficient mice: organ-specific virulence genes. J Virol. 1995 Jan;69(1):357–364. doi: 10.1128/jvi.69.1.357-364.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapuler A. M. An extraordinary temperature dependence of the reovirus transcriptase. Biochemistry. 1970 Oct 27;9(22):4453–4457. doi: 10.1021/bi00824a029. [DOI] [PubMed] [Google Scholar]
- Kapuler A. M., Mendelsohn N., Klett H., Acs G. Four base-specific nucleoside 5'-triphosphatases in the subviral core of reovirus. Nature. 1970 Mar 28;225(5239):1209–1213. doi: 10.1038/2251209a0. [DOI] [PubMed] [Google Scholar]
- Koonin E. V. Computer-assisted identification of a putative methyltransferase domain in NS5 protein of flaviviruses and lambda 2 protein of reovirus. J Gen Virol. 1993 Apr;74(Pt 4):733–740. doi: 10.1099/0022-1317-74-4-733. [DOI] [PubMed] [Google Scholar]
- Lemay G., Danis C. Reovirus lambda 1 protein: affinity for double-stranded nucleic acids by a small amino-terminal region of the protein independent from the zinc finger motif. J Gen Virol. 1994 Nov;75(Pt 11):3261–3266. doi: 10.1099/0022-1317-75-11-3261. [DOI] [PubMed] [Google Scholar]
- Mao Z. X., Joklik W. K. Isolation and enzymatic characterization of protein lambda 2, the reovirus guanylyltransferase. Virology. 1991 Nov;185(1):377–386. doi: 10.1016/0042-6822(91)90785-a. [DOI] [PubMed] [Google Scholar]
- Matoba Y., Colucci W. S., Fields B. N., Smith T. W. The reovirus M1 gene determines the relative capacity of growth of reovirus in cultured bovine aortic endothelial cells. J Clin Invest. 1993 Dec;92(6):2883–2888. doi: 10.1172/JCI116910. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matoba Y., Sherry B., Fields B. N., Smith T. W. Identification of the viral genes responsible for growth of strains of reovirus in cultured mouse heart cells. J Clin Invest. 1991 May;87(5):1628–1633. doi: 10.1172/JCI115177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moody M. D., Joklik W. K. The function of reovirus proteins during the reovirus multiplication cycle: analysis using monoreassortants. Virology. 1989 Dec;173(2):437–446. doi: 10.1016/0042-6822(89)90556-4. [DOI] [PubMed] [Google Scholar]
- Morozov S. Y. A possible relationship of reovirus putative RNA polymerase to polymerases of positive-strand RNA viruses. Nucleic Acids Res. 1989 Jul 11;17(13):5394–5394. doi: 10.1093/nar/17.13.5394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nibert M. L., Margraf R. L., Coombs K. M. Nonrandom segregation of parental alleles in reovirus reassortants. J Virol. 1996 Oct;70(10):7295–7300. doi: 10.1128/jvi.70.10.7295-7300.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noble S., Nibert M. L. Characterization of an ATPase activity in reovirus cores and its genetic association with core-shell protein lambda1. J Virol. 1997 Mar;71(3):2182–2191. doi: 10.1128/jvi.71.3.2182-2191.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paatero A. O., Syväoja J. E., Bamford D. H. Double-stranded RNA bacteriophage phi 6 protein P4 is an unspecific nucleoside triphosphatase activated by calcium ions. J Virol. 1995 Nov;69(11):6729–6734. doi: 10.1128/jvi.69.11.6729-6734.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pause A., Sonenberg N. Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J. 1992 Jul;11(7):2643–2654. doi: 10.1002/j.1460-2075.1992.tb05330.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rankin J. T., Jr, Eppes S. B., Antczak J. B., Joklik W. K. Studies on the mechanism of the antiviral activity of ribavirin against reovirus. Virology. 1989 Jan;168(1):147–158. doi: 10.1016/0042-6822(89)90413-3. [DOI] [PubMed] [Google Scholar]
- Rikkonen M., Peränen J., Käriäinen L. ATPase and GTPase activities associated with Semliki Forest virus nonstructural protein nsP2. J Virol. 1994 Sep;68(9):5804–5810. doi: 10.1128/jvi.68.9.5804-5810.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schiff L. A., Nibert M. L., Co M. S., Brown E. G., Fields B. N. Distinct binding sites for zinc and double-stranded RNA in the reovirus outer capsid protein sigma 3. Mol Cell Biol. 1988 Jan;8(1):273–283. doi: 10.1128/mcb.8.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seliger L. S., Zheng K., Shatkin A. J. Complete nucleotide sequence of reovirus L2 gene and deduced amino acid sequence of viral mRNA guanylyltransferase. J Biol Chem. 1987 Dec 5;262(34):16289–16293. [PubMed] [Google Scholar]
- Sherry B., Baty C. J., Blum M. A. Reovirus-induced acute myocarditis in mice correlates with viral RNA synthesis rather than generation of infectious virus in cardiac myocytes. J Virol. 1996 Oct;70(10):6709–6715. doi: 10.1128/jvi.70.10.6709-6715.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherry B., Blum M. A. Multiple viral core proteins are determinants of reovirus-induced acute myocarditis. J Virol. 1994 Dec;68(12):8461–8465. doi: 10.1128/jvi.68.12.8461-8465.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherry B., Fields B. N. The reovirus M1 gene, encoding a viral core protein, is associated with the myocarditic phenotype of a reovirus variant. J Virol. 1989 Nov;63(11):4850–4856. doi: 10.1128/jvi.63.11.4850-4856.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith R. E., Zweerink H. J., Joklik W. K. Polypeptide components of virions, top component and cores of reovirus type 3. Virology. 1969 Dec;39(4):791–810. doi: 10.1016/0042-6822(69)90017-8. [DOI] [PubMed] [Google Scholar]
- Starnes M. C., Joklik W. K. Reovirus protein lambda 3 is a poly(C)-dependent poly(G) polymerase. Virology. 1993 Mar;193(1):356–366. doi: 10.1006/viro.1993.1132. [DOI] [PubMed] [Google Scholar]
- Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiener J. R., Bartlett J. A., Joklik W. K. The sequences of reovirus serotype 3 genome segments M1 and M3 encoding the minor protein mu 2 and the major nonstructural protein mu NS, respectively. Virology. 1989 Apr;169(2):293–304. doi: 10.1016/0042-6822(89)90154-2. [DOI] [PubMed] [Google Scholar]
- Xu P., Miller S. E., Joklik W. K. Generation of reovirus core-like particles in cells infected with hybrid vaccinia viruses that express genome segments L1, L2, L3, and S2. Virology. 1993 Dec;197(2):726–731. doi: 10.1006/viro.1993.1648. [DOI] [PubMed] [Google Scholar]
- Yin P., Cheang M., Coombs K. M. The M1 gene is associated with differences in the temperature optimum of the transcriptase activity in reovirus core particles. J Virol. 1996 Feb;70(2):1223–1227. doi: 10.1128/jvi.70.2.1223-1227.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zou S., Brown E. G. Nucleotide sequence comparison of the M1 genome segment of reovirus type 1 Lang and type 3 Dearing. Virus Res. 1992 Feb;22(2):159–164. doi: 10.1016/0168-1702(92)90042-8. [DOI] [PubMed] [Google Scholar]