Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Oct;71(10):7841–7850. doi: 10.1128/jvi.71.10.7841-7850.1997

Toward a poliovirus-based simian immunodeficiency virus vaccine: correlation between genetic stability and immunogenicity.

S Tang 1, R van Rij 1, D Silvera 1, R Andino 1
PMCID: PMC192139  PMID: 9311872

Abstract

Recombinant polioviruses expressing foreign antigens may provide a convenient vaccine vector to engender mucosal immunity. Replication-competent chimeric viruses can be constructed by fusing foreign antigenic sequences to several positions within the poliovirus polyprotein. Artificial cleavage sites ensure appropriate proteolytic processing of the recombinant polyprotein, yielding mature and functional viral proteins. To study the effect of the position of insertion, two different recombinant polioviruses were examined. A small amino-terminus insertion delayed virus maturation and produced a thermosensitive particle. In contrast, insertion at the junction between the P1 and P2 regions yielded a chimeric poliovirus that replicated like the wild type. Eight different chimeras were constructed by inserting simian immunodeficiency virus (SIV) sequences at the P1/P2 junction. All recombinant viruses replicated with near-wild-type efficiency in tissue culture cells and expressed high levels of the SIV antigens. One of the inserted fragments corresponding to gp41 envelope protein was N-glycosylated but was not secreted. Inserted sequences were only partially retained after few rounds of replication in HeLa cells. This problem could be remedied to some extent by altering the sequences flanking the insertion point. Reducing the homology of the direct repeats by 37% decrease the propensity of the recombinant viruses to delete the insert. To determine the immunogenic potential of the recombinants, mice susceptible to poliovirus infection were inoculated intraperitoneally. The antibody titers elicited against Gag p17 depended on the viral doses and the number of inoculations. In addition, recombinants which display higher genetic stability were more effective in inducing an immune response against the SIV antigens, and inoculation with a mix of recombinants carrying different SIV antigens (a cocktail of recombinants) elicited humoral responses against each of the individual SIV sequences.

Full Text

The Full Text of this article is available as a PDF (833.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander L., Lu H. H., Gromeier M., Wimmer E. Dicistronic polioviruses as expression vectors for foreign genes. AIDS Res Hum Retroviruses. 1994;10 (Suppl 2):S57–S60. [PubMed] [Google Scholar]
  2. Anderson M. J., Porter D. C., Fultz P. N., Morrow C. D. Poliovirus replicons that express the gag or the envelope surface protein of simian immunodeficiency virus SIV(smm) PBj14. Virology. 1996 May 1;219(1):140–149. doi: 10.1006/viro.1996.0231. [DOI] [PubMed] [Google Scholar]
  3. Andino R., Rieckhof G. E., Achacoso P. L., Baltimore D. Poliovirus RNA synthesis utilizes an RNP complex formed around the 5'-end of viral RNA. EMBO J. 1993 Sep;12(9):3587–3598. doi: 10.1002/j.1460-2075.1993.tb06032.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Andino R., Silvera D., Suggett S. D., Achacoso P. L., Miller C. J., Baltimore D., Feinberg M. B. Engineering poliovirus as a vaccine vector for the expression of diverse antigens. Science. 1994 Sep 2;265(5177):1448–1451. doi: 10.1126/science.8073288. [DOI] [PubMed] [Google Scholar]
  5. Ansardi D. C., Pal-Ghosh R., Porter D., Morrow C. D. Encapsidation and serial passage of a poliovirus replicon which expresses an inactive 2A proteinase. J Virol. 1995 Feb;69(2):1359–1366. doi: 10.1128/jvi.69.2.1359-1366.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burke K. L., Dunn G., Ferguson M., Minor P. D., Almond J. W. Antigen chimaeras of poliovirus as potential new vaccines. Nature. 1988 Mar 3;332(6159):81–82. doi: 10.1038/332081a0. [DOI] [PubMed] [Google Scholar]
  7. Choi W. S., Pal-Ghosh R., Morrow C. D. Expression of human immunodeficiency virus type 1 (HIV-1) gag, pol, and env proteins from chimeric HIV-1-poliovirus minireplicons. J Virol. 1991 Jun;65(6):2875–2883. doi: 10.1128/jvi.65.6.2875-2883.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cooney E. L., McElrath M. J., Corey L., Hu S. L., Collier A. C., Arditti D., Hoffman M., Coombs R. W., Smith G. E., Greenberg P. D. Enhanced immunity to human immunodeficiency virus (HIV) envelope elicited by a combined vaccine regimen consisting of priming with a vaccinia recombinant expressing HIV envelope and boosting with gp160 protein. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1882–1886. doi: 10.1073/pnas.90.5.1882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evans D. J., McKeating J., Meredith J. M., Burke K. L., Katrak K., John A., Ferguson M., Minor P. D., Weiss R. A., Almond J. W. An engineered poliovirus chimaera elicits broadly reactive HIV-1 neutralizing antibodies. Nature. 1989 Jun 1;339(6223):385-8, 340. doi: 10.1038/339385a0. [DOI] [PubMed] [Google Scholar]
  10. Forrest B. D. Women, HIV, and mucosal immunity. Lancet. 1991 Apr 6;337(8745):835–836. doi: 10.1016/0140-6736(91)92527-9. [DOI] [PubMed] [Google Scholar]
  11. Henry J. L., Jaikaran E. S., Davies J. R., Tomlinson A. J., Mason P. J., Barnes J. M., Beale A. J. A study of poliovaccination in infancy: excretion following challenge with live virus by children given killed or living poliovaccine. J Hyg (Lond) 1966 Mar;64(1):105–120. doi: 10.1017/s0022172400040389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hu S. L., Abrams K., Barber G. N., Moran P., Zarling J. M., Langlois A. J., Kuller L., Morton W. R., Benveniste R. E. Protection of macaques against SIV infection by subunit vaccines of SIV envelope glycoprotein gp160. Science. 1992 Jan 24;255(5043):456–459. doi: 10.1126/science.1531159. [DOI] [PubMed] [Google Scholar]
  13. Karzon D. T., Bolognesi D. P., Koff W. C. Development of a vaccine for the prevention of AIDS, a critical appraisal. Vaccine. 1992;10(14):1039–1052. doi: 10.1016/0264-410x(92)90114-y. [DOI] [PubMed] [Google Scholar]
  14. Kirkegaard K., Baltimore D. The mechanism of RNA recombination in poliovirus. Cell. 1986 Nov 7;47(3):433–443. doi: 10.1016/0092-8674(86)90600-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kirkegaard K. Genetic analysis of picornaviruses. Curr Opin Genet Dev. 1992 Feb;2(1):64–70. doi: 10.1016/S0959-437X(05)80324-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lu H. H., Alexander L., Wimmer E. Construction and genetic analysis of dicistronic polioviruses containing open reading frames for epitopes of human immunodeficiency virus type 1 gp120. J Virol. 1995 Aug;69(8):4797–4806. doi: 10.1128/jvi.69.8.4797-4806.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Luthman H., Magnusson G. High efficiency polyoma DNA transfection of chloroquine treated cells. Nucleic Acids Res. 1983 Mar 11;11(5):1295–1308. doi: 10.1093/nar/11.5.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Magrath D., Bainton D., Freeman M. Response of children to a single dose of oral or inactivated polio vaccine. Dev Biol Stand. 1981;47:223–226. [PubMed] [Google Scholar]
  19. Mattion N. M., Reilly P. A., DiMichele S. J., Crowley J. C., Weeks-Levy C. Attenuated poliovirus strain as a live vector: expression of regions of rotavirus outer capsid protein VP7 by using recombinant Sabin 3 viruses. J Virol. 1994 Jun;68(6):3925–3933. doi: 10.1128/jvi.68.6.3925-3933.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Merson M. H. Slowing the spread of HIV: agenda for the 1990s. Science. 1993 May 28;260(5112):1266–1268. doi: 10.1126/science.8493570. [DOI] [PubMed] [Google Scholar]
  21. Moscufo N., Chow M. Myristate-protein interactions in poliovirus: interactions of VP4 threonine 28 contribute to the structural conformation of assembly intermediates and the stability of assembled virions. J Virol. 1992 Dec;66(12):6849–6857. doi: 10.1128/jvi.66.12.6849-6857.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nishio O., Ishihara Y., Sakae K., Nonomura Y., Kuno A., Yasukawa S., Inoue H., Miyamura K., Kono R. The trend of acquired immunity with live poliovirus vaccine and the effect of revaccination: follow-up of vaccinees for ten years. J Biol Stand. 1984 Jan;12(1):1–10. doi: 10.1016/s0092-1157(84)80015-3. [DOI] [PubMed] [Google Scholar]
  23. Pantaleo G., Graziosi C., Demarest J. F., Butini L., Montroni M., Fox C. H., Orenstein J. M., Kotler D. P., Fauci A. S. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature. 1993 Mar 25;362(6418):355–358. doi: 10.1038/362355a0. [DOI] [PubMed] [Google Scholar]
  24. Porter D. C., Ansardi D. C., Morrow C. D. Encapsidation of poliovirus replicons encoding the complete human immunodeficiency virus type 1 gag gene by using a complementation system which provides the P1 capsid protein in trans. J Virol. 1995 Mar;69(3):1548–1555. doi: 10.1128/jvi.69.3.1548-1555.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rosenberg A. H., Lade B. N., Chui D. S., Lin S. W., Dunn J. J., Studier F. W. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene. 1987;56(1):125–135. doi: 10.1016/0378-1119(87)90165-x. [DOI] [PubMed] [Google Scholar]
  26. Sabin A. B. Oral poliovirus vaccine: history of its development and use and current challenge to eliminate poliomyelitis from the world. J Infect Dis. 1985 Mar;151(3):420–436. doi: 10.1093/infdis/151.3.420. [DOI] [PubMed] [Google Scholar]
  27. Trono D., Andino R., Baltimore D. An RNA sequence of hundreds of nucleotides at the 5' end of poliovirus RNA is involved in allowing viral protein synthesis. J Virol. 1988 Jul;62(7):2291–2299. doi: 10.1128/jvi.62.7.2291-2299.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weiss R. A. How does HIV cause AIDS? Science. 1993 May 28;260(5112):1273–1279. doi: 10.1126/science.8493571. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES