Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Oct;71(10):7873–7880. doi: 10.1128/jvi.71.10.7873-7880.1997

A carboxy-terminal region required by the adenovirus type 9 E4 ORF1 oncoprotein for transformation mediates direct binding to cellular polypeptides.

R S Weiss 1, R T Javier 1
PMCID: PMC192143  PMID: 9311876

Abstract

Human adenovirus type 9 (Ad9) is unique among oncogenic adenoviruses in that it elicits exclusively mammary tumors in rats and requires the viral E4 region open reading frame 1 (9ORF1) gene for tumorigenicity. The 9ORF1 oncogenic determinant codes for a 14-kDa transforming protein, and three separate regions of this polypeptide, including one at the extreme C terminus, are necessary for transforming activity. In this study, we investigated whether the 9ORF1 transforming protein interacts with cellular factors. Following incubation with cell extracts, a glutathione S-transferase (GST)-9ORF1 fusion protein associated with several cellular phosphoproteins (p220, p180, p160, p155), whereas GST fusion proteins of transformation-defective 9ORF1 C-terminal mutants did not. Similar interactions requiring the 9ORF1 C terminus were revealed with protein-blotting assays, in which a GST-9ORF1 protein probe reacted specifically with cellular polypeptides having gel mobilities resembling those of the 9ORF1-associated cellular phosphoproteins, as well as with additional cellular polypeptides designated p140/p130. In addition, GST fusion proteins containing 9ORF1 C-terminal fragments associated with some of the 9ORF1-associated cellular polypeptides, as did GST fusion proteins of full-length wild-type Ad5 and Ad12 E4 ORF1 transforming proteins. Significantly, the results of coimmunoprecipitation analyses suggested that the same cellular polypeptides also associate with wild-type but not C-terminal-mutant 9ORF1 proteins in vivo. Together, these findings suggest that the 9ORF1 C terminus, which is essential for transformation, participates in specific and direct binding of the 9ORF1 oncoprotein to multiple cellular polypeptides. We propose that interactions with these cellular factors may be responsible, at least in part, for the transforming activity of the 9ORF1 viral oncoprotein.

Full Text

The Full Text of this article is available as a PDF (709.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. André B., Springael J. Y. WWP, a new amino acid motif present in single or multiple copies in various proteins including dystrophin and the SH3-binding Yes-associated protein YAP65. Biochem Biophys Res Commun. 1994 Dec 15;205(2):1201–1205. doi: 10.1006/bbrc.1994.2793. [DOI] [PubMed] [Google Scholar]
  2. Ankerst J., Jonsson N. Adenovirus type 9-induced tumorigenesis in the rat mammary gland related to sex hormonal state. J Natl Cancer Inst. 1989 Feb 15;81(4):294–298. doi: 10.1093/jnci/81.4.294. [DOI] [PubMed] [Google Scholar]
  3. Bridge E., Ketner G. Redundant control of adenovirus late gene expression by early region 4. J Virol. 1989 Feb;63(2):631–638. doi: 10.1128/jvi.63.2.631-638.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bridge E., Medghalchi S., Ubol S., Leesong M., Ketner G. Adenovirus early region 4 and viral DNA synthesis. Virology. 1993 Apr;193(2):794–801. doi: 10.1006/viro.1993.1188. [DOI] [PubMed] [Google Scholar]
  5. Cedergren-Zeppezauer E. S., Larsson G., Nyman P. O., Dauter Z., Wilson K. S. Crystal structure of a dUTPase. Nature. 1992 Feb 20;355(6362):740–743. doi: 10.1038/355740a0. [DOI] [PubMed] [Google Scholar]
  6. Cutt J. R., Shenk T., Hearing P. Analysis of adenovirus early region 4-encoded polypeptides synthesized in productively infected cells. J Virol. 1987 Feb;61(2):543–552. doi: 10.1128/jvi.61.2.543-552.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dix I., Leppard K. N. Expression of adenovirus type 5 E4 Orf2 protein during lytic infection. J Gen Virol. 1995 Apr;76(Pt 4):1051–1055. doi: 10.1099/0022-1317-76-4-1051. [DOI] [PubMed] [Google Scholar]
  8. Dobner T., Horikoshi N., Rubenwolf S., Shenk T. Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science. 1996 Jun 7;272(5267):1470–1473. doi: 10.1126/science.272.5267.1470. [DOI] [PubMed] [Google Scholar]
  9. Fanning E. Simian virus 40 large T antigen: the puzzle, the pieces, and the emerging picture. J Virol. 1992 Mar;66(3):1289–1293. doi: 10.1128/jvi.66.3.1289-1293.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fisher P. B., Babiss L. E., Weinstein I. B., Ginsberg H. S. Analysis of type 5 adenovirus transformation with a cloned rat embryo cell line (CREF). Proc Natl Acad Sci U S A. 1982 Jun;79(11):3527–3531. doi: 10.1073/pnas.79.11.3527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grieco F., Hay J. M., Hull R. An improved procedure for the purification of protein fused with glutathione S-transferase. Biotechniques. 1992 Dec;13(6):856–858. [PubMed] [Google Scholar]
  12. Halbert D. N., Cutt J. R., Shenk T. Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutoff. J Virol. 1985 Oct;56(1):250–257. doi: 10.1128/jvi.56.1.250-257.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huang M. M., Hearing P. Adenovirus early region 4 encodes two gene products with redundant effects in lytic infection. J Virol. 1989 Jun;63(6):2605–2615. doi: 10.1128/jvi.63.6.2605-2615.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Huang M. M., Hearing P. The adenovirus early region 4 open reading frame 6/7 protein regulates the DNA binding activity of the cellular transcription factor, E2F, through a direct complex. Genes Dev. 1989 Nov;3(11):1699–1710. doi: 10.1101/gad.3.11.1699. [DOI] [PubMed] [Google Scholar]
  15. Javier R. T. Adenovirus type 9 E4 open reading frame 1 encodes a transforming protein required for the production of mammary tumors in rats. J Virol. 1994 Jun;68(6):3917–3924. doi: 10.1128/jvi.68.6.3917-3924.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Javier R., Raska K., Jr, Macdonald G. J., Shenk T. Human adenovirus type 9-induced rat mammary tumors. J Virol. 1991 Jun;65(6):3192–3202. doi: 10.1128/jvi.65.6.3192-3202.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Javier R., Raska K., Jr, Shenk T. Requirement for the adenovirus type 9 E4 region in production of mammary tumors. Science. 1992 Aug 28;257(5074):1267–1271. doi: 10.1126/science.1519063. [DOI] [PubMed] [Google Scholar]
  18. Javier R., Shenk T. Mammary tumors induced by human adenovirus type 9: a role for the viral early region 4 gene. Breast Cancer Res Treat. 1996;39(1):57–67. doi: 10.1007/BF01806078. [DOI] [PubMed] [Google Scholar]
  19. Jones P. A., Rhim J. S., Isaacs H., Jr, McAllister R. M. The relationship between tumorigenicity, growth in agar and fibrinolytic activity in a line of human osteosarcoma cells. Int J Cancer. 1975 Oct 15;16(4):616–621. doi: 10.1002/ijc.2910160411. [DOI] [PubMed] [Google Scholar]
  20. Kaelin W. G., Jr, Krek W., Sellers W. R., DeCaprio J. A., Ajchenbaum F., Fuchs C. S., Chittenden T., Li Y., Farnham P. J., Blanar M. A. Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell. 1992 Jul 24;70(2):351–364. doi: 10.1016/0092-8674(92)90108-o. [DOI] [PubMed] [Google Scholar]
  21. Kiefer F., Courtneidge S. A., Wagner E. F. Oncogenic properties of the middle T antigens of polyomaviruses. Adv Cancer Res. 1994;64:125–157. doi: 10.1016/s0065-230x(08)60837-4. [DOI] [PubMed] [Google Scholar]
  22. Kleinberger T., Shenk T. Adenovirus E4orf4 protein binds to protein phosphatase 2A, and the complex down regulates E1A-enhanced junB transcription. J Virol. 1993 Dec;67(12):7556–7560. doi: 10.1128/jvi.67.12.7556-7560.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Larsson G., Svensson L. A., Nyman P. O. Crystal structure of the Escherichia coli dUTPase in complex with a substrate analogue (dUDP). Nat Struct Biol. 1996 Jun;3(6):532–538. doi: 10.1038/nsb0696-532. [DOI] [PubMed] [Google Scholar]
  24. Lee S. S., Weiss R. S., Javier R. T. Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6670–6675. doi: 10.1073/pnas.94.13.6670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marton M. J., Baim S. B., Ornelles D. A., Shenk T. The adenovirus E4 17-kilodalton protein complexes with the cellular transcription factor E2F, altering its DNA-binding properties and stimulating E1A-independent accumulation of E2 mRNA. J Virol. 1990 May;64(5):2345–2359. doi: 10.1128/jvi.64.5.2345-2359.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moran E., Mathews M. B. Multiple functional domains in the adenovirus E1A gene. Cell. 1987 Jan 30;48(2):177–178. doi: 10.1016/0092-8674(87)90418-1. [DOI] [PubMed] [Google Scholar]
  27. Mosialos G., Birkenbach M., Yalamanchili R., VanArsdale T., Ware C., Kieff E. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell. 1995 Feb 10;80(3):389–399. doi: 10.1016/0092-8674(95)90489-1. [DOI] [PubMed] [Google Scholar]
  28. Neill S. D., Hemstrom C., Virtanen A., Nevins J. R. An adenovirus E4 gene product trans-activates E2 transcription and stimulates stable E2F binding through a direct association with E2F. Proc Natl Acad Sci U S A. 1990 Mar;87(5):2008–2012. doi: 10.1073/pnas.87.5.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pawson T. Protein modules and signalling networks. Nature. 1995 Feb 16;373(6515):573–580. doi: 10.1038/373573a0. [DOI] [PubMed] [Google Scholar]
  30. Peifer M., Berg S., Reynolds A. B. A repeating amino acid motif shared by proteins with diverse cellular roles. Cell. 1994 Mar 11;76(5):789–791. doi: 10.1016/0092-8674(94)90353-0. [DOI] [PubMed] [Google Scholar]
  31. Petti L., Nilson L. A., DiMaio D. Activation of the platelet-derived growth factor receptor by the bovine papillomavirus E5 transforming protein. EMBO J. 1991 Apr;10(4):845–855. doi: 10.1002/j.1460-2075.1991.tb08017.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pipas J. M. Common and unique features of T antigens encoded by the polyomavirus group. J Virol. 1992 Jul;66(7):3979–3985. doi: 10.1128/jvi.66.7.3979-3985.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ponting C. P., Phillips C. DHR domains in syntrophins, neuronal NO synthases and other intracellular proteins. Trends Biochem Sci. 1995 Mar;20(3):102–103. doi: 10.1016/s0968-0004(00)88973-2. [DOI] [PubMed] [Google Scholar]
  34. Sarnow P., Hearing P., Anderson C. W., Halbert D. N., Shenk T., Levine A. J. Adenovirus early region 1B 58,000-dalton tumor antigen is physically associated with an early region 4 25,000-dalton protein in productively infected cells. J Virol. 1984 Mar;49(3):692–700. doi: 10.1128/jvi.49.3.692-700.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sarnow P., Hearing P., Anderson C. W., Reich N., Levine A. J. Identification and characterization of an immunologically conserved adenovirus early region 11,000 Mr protein and its association with the nuclear matrix. J Mol Biol. 1982 Dec 15;162(3):565–583. doi: 10.1016/0022-2836(82)90389-8. [DOI] [PubMed] [Google Scholar]
  36. Weiss R. S., Lee S. S., Prasad B. V., Javier R. T. Human adenovirus early region 4 open reading frame 1 genes encode growth-transforming proteins that may be distantly related to dUTP pyrophosphatase enzymes. J Virol. 1997 Mar;71(3):1857–1870. doi: 10.1128/jvi.71.3.1857-1870.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Weiss R. S., McArthur M. J., Javier R. T. Human adenovirus type 9 E4 open reading frame 1 encodes a cytoplasmic transforming protein capable of increasing the oncogenicity of CREF cells. J Virol. 1996 Feb;70(2):862–872. doi: 10.1128/jvi.70.2.862-872.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES