Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Virology logoLink to Journal of Virology
. 1997 Oct;71(10):7881–7888. doi: 10.1128/jvi.71.10.7881-7888.1997

Neonatal DNA immunization with a plasmid encoding an internal viral protein is effective in the presence of maternal antibodies and protects against subsequent viral challenge.

D E Hassett 1, J Zhang 1, J L Whitton 1
PMCID: PMC192144  PMID: 9311877

Abstract

Conventional vaccines are remarkably effective in adults but are much less successful in the very young, who are less able to initiate a mature immune response and who may carry maternal antibodies which inactivate standard vaccines. We set out to determine whether DNA immunization might circumvent these problems. We have previously shown that intramuscular injection of plasmid DNA encoding the nucleoprotein (NP) gene of lymphocytic choriomeningitis virus (LCMV) is capable of inducing immune responses and protecting 50% of adult mice against lethal and sublethal challenge with LCMV. Here we demonstrate that mouse pups injected with the same plasmid hours or days after birth produce major histocompatibility complex-restricted, NP-specific cytotoxic T lymphocytes (CTL) that persist into adulthood; 48% of vaccinated pups responded to subsequent sublethal viral challenge by the accelerated production of anti-NP LCMV-specific CTL, indicating that these animals had been successfully immunized by the plasmid DNA. In addition, these mice showed a >95% reduction in splenic viral titers 4 days postinfection compared to control mice, demonstrating a more rapid control of infection in vivo. Furthermore, pups born of and suckled on LCMV-immune dams (and therefore containing passively acquired anti-LCMV antibodies at the time of DNA inoculation) responded to the DNA vaccine in a similar manner, showing that maternally derived anti-LCMV antibodies do not significantly inhibit the generation of protective immune responses following DNA vaccination. These findings suggest that, at least in this model system, DNA immunization circumvents many of the problems associated with neonatal immunization.

Full Text

The Full Text of this article is available as a PDF (216.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht P., Ennis F. A., Saltzman E. J., Krugman S. Persistence of maternal antibody in infants beyond 12 months: mechanism of measles vaccine failure. J Pediatr. 1977 Nov;91(5):715–718. doi: 10.1016/s0022-3476(77)81021-4. [DOI] [PubMed] [Google Scholar]
  2. Anderson L. J., Parker R. A., Strikas R. L. Association between respiratory syncytial virus outbreaks and lower respiratory tract deaths of infants and young children. J Infect Dis. 1990 Apr;161(4):640–646. doi: 10.1093/infdis/161.4.640. [DOI] [PubMed] [Google Scholar]
  3. Baldridge J. R., Buchmeier M. J. Mechanisms of antibody-mediated protection against lymphocytic choriomeningitis virus infection: mother-to-baby transfer of humoral protection. J Virol. 1992 Jul;66(7):4252–4257. doi: 10.1128/jvi.66.7.4252-4257.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baldridge J. R., McGraw T. S., Paoletti A., Buchmeier M. J. Antibody prevents the establishment of persistent arenavirus infection in synergy with endogenous T cells. J Virol. 1997 Jan;71(1):755–758. doi: 10.1128/jvi.71.1.755-758.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bern C., Martines J., de Zoysa I., Glass R. I. The magnitude of the global problem of diarrhoeal disease: a ten-year update. Bull World Health Organ. 1992;70(6):705–714. [PMC free article] [PubMed] [Google Scholar]
  6. Bot A., Bot S., Garcia-Sastre A., Bona C. DNA immunization of newborn mice with a plasmid-expressing nucleoprotein of influenza virus. Viral Immunol. 1996;9(4):207–210. doi: 10.1089/vim.1996.9.207. [DOI] [PubMed] [Google Scholar]
  7. Brunner K. T., Mauel J., Cerottini J. C., Chapuis B. Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology. 1968 Feb;14(2):181–196. [PMC free article] [PubMed] [Google Scholar]
  8. Buchmeier M. J., Welsh R. M., Dutko F. J., Oldstone M. B. The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv Immunol. 1980;30:275–331. doi: 10.1016/s0065-2776(08)60197-2. [DOI] [PubMed] [Google Scholar]
  9. Byrne J. A., Oldstone M. B. Biology of cloned cytotoxic T lymphocytes specific for lymphocytic choriomeningitis virus: clearance of virus in vivo. J Virol. 1984 Sep;51(3):682–686. doi: 10.1128/jvi.51.3.682-686.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Donnelly J. J., Ulmer J. B., Liu M. A. DNA vaccines. Life Sci. 1997;60(3):163–172. doi: 10.1016/s0024-3205(96)00502-4. [DOI] [PubMed] [Google Scholar]
  11. Feltquate D. M., Heaney S., Webster R. G., Robinson H. L. Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J Immunol. 1997 Mar 1;158(5):2278–2284. [PubMed] [Google Scholar]
  12. Forsthuber T., Yip H. C., Lehmann P. V. Induction of TH1 and TH2 immunity in neonatal mice. Science. 1996 Mar 22;271(5256):1728–1730. doi: 10.1126/science.271.5256.1728. [DOI] [PubMed] [Google Scholar]
  13. Fynan E. F., Webster R. G., Fuller D. H., Haynes J. R., Santoro J. C., Robinson H. L. DNA vaccines: a novel approach to immunization. Int J Immunopharmacol. 1995 Feb;17(2):79–83. doi: 10.1016/0192-0561(94)00090-b. [DOI] [PubMed] [Google Scholar]
  14. Hassett D. E., Whitton J. L. DNA immunization. Trends Microbiol. 1996 Aug;4(8):307–312. doi: 10.1016/0966-842x(96)10048-2. [DOI] [PubMed] [Google Scholar]
  15. Klavinskis L. S., Whitton J. L., Joly E., Oldstone M. B. Vaccination and protection from a lethal viral infection: identification, incorporation, and use of a cytotoxic T lymphocyte glycoprotein epitope. Virology. 1990 Oct;178(2):393–400. doi: 10.1016/0042-6822(90)90336-p. [DOI] [PubMed] [Google Scholar]
  16. Klavinskis L. S., Whitton J. L., Oldstone M. B. Molecularly engineered vaccine which expresses an immunodominant T-cell epitope induces cytotoxic T lymphocytes that confer protection from lethal virus infection. J Virol. 1989 Oct;63(10):4311–4316. doi: 10.1128/jvi.63.10.4311-4316.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Markowitz L. E., Albrecht P., Rhodes P., Demonteverde R., Swint E., Maes E. F., Powell C., Patriarca P. A. Changing levels of measles antibody titers in women and children in the United States: impact on response to vaccination. Kaiser Permanente Measles Vaccine Trial Team. Pediatrics. 1996 Jan;97(1):53–58. [PubMed] [Google Scholar]
  18. Martins L. P., Lau L. L., Asano M. S., Ahmed R. DNA vaccination against persistent viral infection. J Virol. 1995 Apr;69(4):2574–2582. doi: 10.1128/jvi.69.4.2574-2582.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Monteil M., Le Potier M. F., Guillotin J., Cariolet R., Houdayer C., Eloit M. Genetic immunization of seronegative one-day-old piglets against pseudorabies induces neutralizing antibodies but not protection and is ineffective in piglets from immune dams. Vet Res. 1996;27(4-5):443–452. [PubMed] [Google Scholar]
  20. Mor G., Yamshchikov G., Sedegah M., Takeno M., Wang R., Houghten R. A., Hoffman S., Klinman D. M. Induction of neonatal tolerance by plasmid DNA vaccination of mice. J Clin Invest. 1996 Dec 15;98(12):2700–2705. doi: 10.1172/JCI119094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pertmer T. M., Roberts T. R., Haynes J. R. Influenza virus nucleoprotein-specific immunoglobulin G subclass and cytokine responses elicited by DNA vaccination are dependent on the route of vector DNA delivery. J Virol. 1996 Sep;70(9):6119–6125. doi: 10.1128/jvi.70.9.6119-6125.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Raz E., Tighe H., Sato Y., Corr M., Dudler J. A., Roman M., Swain S. L., Spiegelberg H. L., Carson D. A. Preferential induction of a Th1 immune response and inhibition of specific IgE antibody formation by plasmid DNA immunization. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5141–5145. doi: 10.1073/pnas.93.10.5141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ridge J. P., Fuchs E. J., Matzinger P. Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science. 1996 Mar 22;271(5256):1723–1726. doi: 10.1126/science.271.5256.1723. [DOI] [PubMed] [Google Scholar]
  24. Sarzotti M., Robbins D. S., Hoffman P. M. Induction of protective CTL responses in newborn mice by a murine retrovirus. Science. 1996 Mar 22;271(5256):1726–1728. doi: 10.1126/science.271.5256.1726. [DOI] [PubMed] [Google Scholar]
  25. Schulz M., Aichele P., Vollenweider M., Bobe F. W., Cardinaux F., Hengartner H., Zinkernagel R. M. Major histocompatibility complex--dependent T cell epitopes of lymphocytic choriomeningitis virus nucleoprotein and their protective capacity against viral disease. Eur J Immunol. 1989 Sep;19(9):1657–1667. doi: 10.1002/eji.1830190921. [DOI] [PubMed] [Google Scholar]
  26. Schulz M., Zinkernagel R. M., Hengartner H. Peptide-induced antiviral protection by cytotoxic T cells. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):991–993. doi: 10.1073/pnas.88.3.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Snyder J. D., Merson M. H. The magnitude of the global problem of acute diarrhoeal disease: a review of active surveillance data. Bull World Health Organ. 1982;60(4):605–613. [PMC free article] [PubMed] [Google Scholar]
  28. Stewien K. E., Barbosa V., de Lima O. S., Osiro K. The influence of maternally derived antibody on the efficacy of further attenuated measles vaccine. Infection. 1978;6(5):207–210. doi: 10.1007/BF01642310. [DOI] [PubMed] [Google Scholar]
  29. Walsh J. A., Warren K. S. Selective primary health care: an interim strategy for disease control in developing countries. N Engl J Med. 1979 Nov 1;301(18):967–974. doi: 10.1056/NEJM197911013011804. [DOI] [PubMed] [Google Scholar]
  30. Wang Y., Xiang Z., Pasquini S., Ertl H. C. Immune response to neonatal genetic immunization. Virology. 1997 Feb 17;228(2):278–284. doi: 10.1006/viro.1996.8384. [DOI] [PubMed] [Google Scholar]
  31. Whitton J. L., Sheng N., Oldstone M. B., McKee T. A. A "string-of-beads" vaccine, comprising linked minigenes, confers protection from lethal-dose virus challenge. J Virol. 1993 Jan;67(1):348–352. doi: 10.1128/jvi.67.1.348-352.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wolff J. A., Ludtke J. J., Acsadi G., Williams P., Jani A. Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genet. 1992 Sep;1(6):363–369. doi: 10.1093/hmg/1.6.363. [DOI] [PubMed] [Google Scholar]
  33. Wolff J. A., Malone R. W., Williams P., Chong W., Acsadi G., Jani A., Felgner P. L. Direct gene transfer into mouse muscle in vivo. Science. 1990 Mar 23;247(4949 Pt 1):1465–1468. doi: 10.1126/science.1690918. [DOI] [PubMed] [Google Scholar]
  34. Yokoyama M., Hassett D. E., Zhang J., Whitton J. L. DNA immunization can stimulate florid local inflammation, and the antiviral immunity induced varies depending on injection site. Vaccine. 1997 Apr;15(5):553–560. doi: 10.1016/s0264-410x(97)00213-2. [DOI] [PubMed] [Google Scholar]
  35. Yokoyama M., Zhang J., Whitton J. L. DNA immunization confers protection against lethal lymphocytic choriomeningitis virus infection. J Virol. 1995 Apr;69(4):2684–2688. doi: 10.1128/jvi.69.4.2684-2688.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yokoyama M., Zhang J., Whitton J. L. DNA immunization: effects of vehicle and route of administration on the induction of protective antiviral immunity. FEMS Immunol Med Microbiol. 1996 Jul;14(4):221–230. doi: 10.1111/j.1574-695X.1996.tb00290.x. [DOI] [PubMed] [Google Scholar]
  37. Zarozinski C. C., Fynan E. F., Selin L. K., Robinson H. L., Welsh R. M. Protective CTL-dependent immunity and enhanced immunopathology in mice immunized by particle bombardment with DNA encoding an internal virion protein. J Immunol. 1995 Apr 15;154(8):4010–4017. [PubMed] [Google Scholar]
  38. Zinkernagel R. M., Doherty P. C. MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Adv Immunol. 1979;27:51–177. doi: 10.1016/s0065-2776(08)60262-x. [DOI] [PubMed] [Google Scholar]
  39. Zinkernagel R. M., Doherty P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature. 1974 Apr 19;248(5450):701–702. doi: 10.1038/248701a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES