Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Oct;71(10):7889–7894. doi: 10.1128/jvi.71.10.7889-7894.1997

The carboxyl-terminal 120-residue polypeptide of infectious bronchitis virus nucleocapsid induces cytotoxic T lymphocytes and protects chickens from acute infection.

S H Seo 1, L Wang 1, R Smith 1, E W Collisson 1
PMCID: PMC192145  PMID: 9311878

Abstract

Specific cytotoxic T-lymphocyte (CTL) responses to nucleocapsid of infectious bronchitis virus (IBV) were identified by using target cells infected with a Semliki Forest virus (SFV) vector. Effector cells for CTL assays were collected from chickens infected with the Gray strain of IBV or inoculated with a DNA plasmid encoding nucleocapsid proteins. IBV-specific CTL epitopes were mapped within the carboxyl-terminal 120 amino acids of the nucleocapsid protein. CTL lysis of target cells infected with SFV encoding nucleocapsid was major histocompatibility complex restricted and mediated by CD8+ T cells. In addition, splenic T cells collected from chickens inoculated in the breast muscle with a DNA plasmid encoding this CTL epitope(s) recognized target cells infected with wild-type virus or an SFV vector encoding nucleocapsid proteins. CTL activity of splenic T cells collected from chicks immunized with a DNA plasmid encoding CTL epitopes was cross-reactive, in that lysis of target cells infected with serologically distinct strains of IBV was dose responsive in a manner similar to that for lysis of target cells infected with the homologous strain of IBV. Furthermore, chickens immunized with a DNA plasmid encoding a CTL epitope(s) were protected from acute viral infection.

Full Text

The Full Text of this article is available as a PDF (156.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bangham C. R., Openshaw P. J., Ball L. A., King A. M., Wertz G. W., Askonas B. A. Human and murine cytotoxic T cells specific to respiratory syncytial virus recognize the viral nucleoprotein (N), but not the major glycoprotein (G), expressed by vaccinia virus recombinants. J Immunol. 1986 Dec 15;137(12):3973–3977. [PubMed] [Google Scholar]
  2. Bevan M. J. Immunology. Stimulating killer cells. Nature. 1989 Nov 30;342(6249):478–479. doi: 10.1038/342478a0. [DOI] [PubMed] [Google Scholar]
  3. Bingham R. W. The polypeptide composition of avian infectious bronchitis virus. Arch Virol. 1975;49(2-3):207–216. doi: 10.1007/BF01317539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. Structure of the human class I histocompatibility antigen, HLA-A2. Nature. 1987 Oct 8;329(6139):506–512. doi: 10.1038/329506a0. [DOI] [PubMed] [Google Scholar]
  5. Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature. 1987 Oct 8;329(6139):512–518. doi: 10.1038/329512a0. [DOI] [PubMed] [Google Scholar]
  6. Boots A. M., Kusters J. G., van Noort J. M., Zwaagstra K. A., Rijke E., van der Zeijst B. A., Hensen E. J. Localization of a T-cell epitope within the nucleocapsid protein of avian coronavirus. Immunology. 1991 Sep;74(1):8–13. [PMC free article] [PubMed] [Google Scholar]
  7. Cavanagh D. Structural polypeptides of coronavirus IBV. J Gen Virol. 1981 Mar;53(Pt 1):93–103. doi: 10.1099/0022-1317-53-1-93. [DOI] [PubMed] [Google Scholar]
  8. Collins M. S., Alexander D. J. Avian infectious bronchitis virus structural polypeptides: effect of different conditions of disruption and comparison of different strains and isolates. Arch Virol. 1980;63(3-4):239–251. doi: 10.1007/BF01315030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davies H. A., Dourmashkin R. R., Macnaughton M. R. Ribonucleoprotein of avian infectious bronchitis virus. J Gen Virol. 1981 Mar;53(Pt 1):67–74. doi: 10.1099/0022-1317-53-1-67. [DOI] [PubMed] [Google Scholar]
  10. Fynan E. F., Webster R. G., Fuller D. H., Haynes J. R., Santoro J. C., Robinson H. L. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11478–11482. doi: 10.1073/pnas.90.24.11478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kusters J. G., Jager E. J., Niesters H. G., van der Zeijst B. A. Sequence evidence for RNA recombination in field isolates of avian coronavirus infectious bronchitis virus. Vaccine. 1990 Dec;8(6):605–608. doi: 10.1016/0264-410X(90)90018-H. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lenstra J. A., Kusters J. G., Koch G., van der Zeijst B. A. Antigenicity of the peplomer protein of infectious bronchitis virus. Mol Immunol. 1989 Jan;26(1):7–15. doi: 10.1016/0161-5890(89)90014-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lomniczi B. Biological properties of avian coronavirus RNA. J Gen Virol. 1977 Sep;36(3):531–533. doi: 10.1099/0022-1317-36-3-531. [DOI] [PubMed] [Google Scholar]
  14. Lukacher A. E., Braciale V. L., Braciale T. J. In vivo effector function of influenza virus-specific cytotoxic T lymphocyte clones is highly specific. J Exp Med. 1984 Sep 1;160(3):814–826. doi: 10.1084/jem.160.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Macnaughton M. R., Madge M. H. The polypeptide composition of avain infectious bronchitis virus particles. Arch Virol. 1977;55(1-2):47–54. doi: 10.1007/BF01314478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Manickan E., Rouse R. J., Yu Z., Wire W. S., Rouse B. T. Genetic immunization against herpes simplex virus. Protection is mediated by CD4+ T lymphocytes. J Immunol. 1995 Jul 1;155(1):259–265. [PubMed] [Google Scholar]
  17. McMichael A. J., Gotch F. M., Rothbard J. HLA B37 determines an influenza A virus nucleoprotein epitope recognized by cytotoxic T lymphocytes. J Exp Med. 1986 Nov 1;164(5):1397–1406. doi: 10.1084/jem.164.5.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Offit P. A., Dudzik K. I. Rotavirus-specific cytotoxic T lymphocytes cross-react with target cells infected with different rotavirus serotypes. J Virol. 1988 Jan;62(1):127–131. doi: 10.1128/jvi.62.1.127-131.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pardoll D. M., Beckerleg A. M. Exposing the immunology of naked DNA vaccines. Immunity. 1995 Aug;3(2):165–169. doi: 10.1016/1074-7613(95)90085-3. [DOI] [PubMed] [Google Scholar]
  20. Puddington L., Bevan M. J., Rose J. K., Lefrançois L. N protein is the predominant antigen recognized by vesicular stomatitis virus-specific cytotoxic T cells. J Virol. 1986 Nov;60(2):708–717. doi: 10.1128/jvi.60.2.708-717.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schochetman G., Stevens R. H., Simpson R. W. Presence of infectious polyadenylated RNA in coronavirus avian bronchitis virus. Virology. 1977 Apr;77(2):772–782. doi: 10.1016/0042-6822(77)90498-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Seo S. H., Collisson E. W. Specific cytotoxic T lymphocytes are involved in in vivo clearance of infectious bronchitis virus. J Virol. 1997 Jul;71(7):5173–5177. doi: 10.1128/jvi.71.7.5173-5177.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Siddell S., Wege H., Ter Meulen V. The biology of coronaviruses. J Gen Virol. 1983 Apr;64(Pt 4):761–776. doi: 10.1099/0022-1317-64-4-761. [DOI] [PubMed] [Google Scholar]
  24. Sneed L. W., Butcher G. D., Parr R., Wang L., Collisson E. W. Comparisons of the structural proteins of avian infectious bronchitis virus as determined by western blot analysis. Viral Immunol. 1989 Fall;2(3):221–227. doi: 10.1089/vim.1989.2.221. [DOI] [PubMed] [Google Scholar]
  25. Stern D. F., Sefton B. M. Coronavirus proteins: biogenesis of avian infectious bronchitis virus virion proteins. J Virol. 1982 Dec;44(3):794–803. doi: 10.1128/jvi.44.3.794-803.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stohlman S. A., Bergmann C. C., van der Veen R. C., Hinton D. R. Mouse hepatitis virus-specific cytotoxic T lymphocytes protect from lethal infection without eliminating virus from the central nervous system. J Virol. 1995 Feb;69(2):684–694. doi: 10.1128/jvi.69.2.684-694.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wang B., Boyer J., Srikantan V., Coney L., Carrano R., Phan C., Merva M., Dang K., Agadjanan M., Gilbert L. DNA inoculation induces neutralizing immune responses against human immunodeficiency virus type 1 in mice and nonhuman primates. DNA Cell Biol. 1993 Nov;12(9):799–805. doi: 10.1089/dna.1993.12.799. [DOI] [PubMed] [Google Scholar]
  28. Wang L., Junker D., Collisson E. W. Evidence of natural recombination within the S1 gene of infectious bronchitis virus. Virology. 1993 Feb;192(2):710–716. doi: 10.1006/viro.1993.1093. [DOI] [PubMed] [Google Scholar]
  29. Williams A. K., Wang L., Sneed L. W., Collisson E. W. Comparative analyses of the nucleocapsid genes of several strains of infectious bronchitis virus and other coronaviruses. Virus Res. 1992 Sep 15;25(3):213–222. doi: 10.1016/0168-1702(92)90135-V. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES