Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Oct;71(10):7903–7910. doi: 10.1128/jvi.71.10.7903-7910.1997

Mutations in the 5' end of the herpes simplex virus type 2 latency-associated transcript (LAT) promoter affect LAT expression in vivo but not the rate of spontaneous reactivation of genital herpes.

K Wang 1, L Pesnicak 1, S E Straus 1
PMCID: PMC192147  PMID: 9311880

Abstract

The primary herpes simplex virus type 2 (HSV-2) latency-associated transcript (LAT) promoter influences LAT expression and rates of virus reactivation. We explored the biological importance of particular neuronally responsive regions within the promoter by creating new recombinant viruses bearing a targeted deletion (246 bp [strain 524]) or a point mutation (2 bp [strain 167]) in this region. These recombinant viruses grew efficiently in vitro and in vivo, caused acute genital disease in guinea pigs, and, as measured by quantitative-competitive (QC) DNA PCR, established latency, all as well as did the wild-type parental HSV-2 strain 333, the rescuant strain 524R, and the previously described 624-bp LAT- promoter deletion mutant. By QC-reverse transcriptase PCR of RNA from latently infected ganglia, mutant 167 expressed wild-type levels of LAT and the deletion mutant 524 expressed 9- to 15-fold less LAT than normal, while the LAT expression of the LAT- mutant was undetectable or at least 5 log units less than that of the wild type. The rates of recurrence of genital lesions were normal for recombinant viruses 524 and 167 but reduced (as expected) for the LAT- mutant. Alteration of a subset of LAT promoter elements reduced LAT expression by 1 log unit but did not influence the rate of spontaneous disease reactivation in vivo. Far greater reductions in LAT expression are necessary before reactivation rates are noticeably changed.

Full Text

The Full Text of this article is available as a PDF (455.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloom D. C., Hill J. M., Devi-Rao G., Wagner E. K., Feldman L. T., Stevens J. G. A 348-base-pair region in the latency-associated transcript facilitates herpes simplex virus type 1 reactivation. J Virol. 1996 Apr;70(4):2449–2459. doi: 10.1128/jvi.70.4.2449-2459.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bourne N., Stanberry L. R., Connelly B. L., Kurawadwala J., Straus S. E., Krause P. R. Quantity of latency-associated transcript produced by herpes simplex virus is not predictive of the frequency of experimental recurrent genital herpes. J Infect Dis. 1994 May;169(5):1084–1087. doi: 10.1093/infdis/169.5.1084. [DOI] [PubMed] [Google Scholar]
  3. Chen X., Schmidt M. C., Goins W. F., Glorioso J. C. Two herpes simplex virus type 1 latency-active promoters differ in their contributions to latency-associated transcript expression during lytic and latent infections. J Virol. 1995 Dec;69(12):7899–7908. doi: 10.1128/jvi.69.12.7899-7908.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Croen K. D., Ostrove J. M., Dragovic L., Straus S. E. Characterization of herpes simplex virus type 2 latency-associated transcription in human sacral ganglia and in cell culture. J Infect Dis. 1991 Jan;163(1):23–28. doi: 10.1093/infdis/163.1.23. [DOI] [PubMed] [Google Scholar]
  5. Deatly A. M., Spivack J. G., Lavi E., Fraser N. W. RNA from an immediate early region of the type 1 herpes simplex virus genome is present in the trigeminal ganglia of latently infected mice. Proc Natl Acad Sci U S A. 1987 May;84(10):3204–3208. doi: 10.1073/pnas.84.10.3204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deshmane S. L., Nicosia M., Valyi-Nagy T., Feldman L. T., Dillner A., Fraser N. W. An HSV-1 mutant lacking the LAT TATA element reactivates normally in explant cocultivation. Virology. 1993 Oct;196(2):868–872. doi: 10.1006/viro.1993.1548. [DOI] [PubMed] [Google Scholar]
  7. Dobson A. T., Sederati F., Devi-Rao G., Flanagan W. M., Farrell M. J., Stevens J. G., Wagner E. K., Feldman L. T. Identification of the latency-associated transcript promoter by expression of rabbit beta-globin mRNA in mouse sensory nerve ganglia latently infected with a recombinant herpes simplex virus. J Virol. 1989 Sep;63(9):3844–3851. doi: 10.1128/jvi.63.9.3844-3851.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fareed M. U., Spivack J. G. Two open reading frames (ORF1 and ORF2) within the 2.0-kilobase latency-associated transcript of herpes simplex virus type 1 are not essential for reactivation from latency. J Virol. 1994 Dec;68(12):8071–8081. doi: 10.1128/jvi.68.12.8071-8081.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Garber D. A., Schaffer P. A., Knipe D. M. A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1. J Virol. 1997 Aug;71(8):5885–5893. doi: 10.1128/jvi.71.8.5885-5893.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goins W. F., Sternberg L. R., Croen K. D., Krause P. R., Hendricks R. L., Fink D. J., Straus S. E., Levine M., Glorioso J. C. A novel latency-active promoter is contained within the herpes simplex virus type 1 UL flanking repeats. J Virol. 1994 Apr;68(4):2239–2252. doi: 10.1128/jvi.68.4.2239-2252.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  12. Hill J. M., Maggioncalda J. B., Garza H. H., Jr, Su Y. H., Fraser N. W., Block T. M. In vivo epinephrine reactivation of ocular herpes simplex virus type 1 in the rabbit is correlated to a 370-base-pair region located between the promoter and the 5' end of the 2.0 kilobase latency-associated transcript. J Virol. 1996 Oct;70(10):7270–7274. doi: 10.1128/jvi.70.10.7270-7274.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krause P. R., Ostrove J. M., Straus S. E. The nucleotide sequence, 5' end, promoter domain, and kinetics of expression of the gene encoding the herpes simplex virus type 2 latency-associated transcript. J Virol. 1991 Oct;65(10):5619–5623. doi: 10.1128/jvi.65.10.5619-5623.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Krause P. R., Stanberry L. R., Bourne N., Connelly B., Kurawadwala J. F., Patel A., Straus S. E. Expression of the herpes simplex virus type 2 latency-associated transcript enhances spontaneous reactivation of genital herpes in latently infected guinea pigs. J Exp Med. 1995 Jan 1;181(1):297–306. doi: 10.1084/jem.181.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leib D. A., Bogard C. L., Kosz-Vnenchak M., Hicks K. A., Coen D. M., Knipe D. M., Schaffer P. A. A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency. J Virol. 1989 Jul;63(7):2893–2900. doi: 10.1128/jvi.63.7.2893-2900.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leib D. A., Nadeau K. C., Rundle S. A., Schaffer P. A. The promoter of the latency-associated transcripts of herpes simplex virus type 1 contains a functional cAMP-response element: role of the latency-associated transcripts and cAMP in reactivation of viral latency. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):48–52. doi: 10.1073/pnas.88.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maggioncalda J., Mehta A., Su Y. H., Fraser N. W., Block T. M. Correlation between herpes simplex virus type 1 rate of reactivation from latent infection and the number of infected neurons in trigeminal ganglia. Virology. 1996 Nov 1;225(1):72–81. doi: 10.1006/viro.1996.0576. [DOI] [PubMed] [Google Scholar]
  18. Perng G. C., Dunkel E. C., Geary P. A., Slanina S. M., Ghiasi H., Kaiwar R., Nesburn A. B., Wechsler S. L. The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency. J Virol. 1994 Dec;68(12):8045–8055. doi: 10.1128/jvi.68.12.8045-8055.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Perng G. C., Ghiasi H., Slanina S. M., Nesburn A. B., Wechsler S. L. The spontaneous reactivation function of the herpes simplex virus type 1 LAT gene resides completely within the first 1.5 kilobases of the 8.3-kilobase primary transcript. J Virol. 1996 Feb;70(2):976–984. doi: 10.1128/jvi.70.2.976-984.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Perng G. C., Slanina S. M., Ghiasi H., Nesburn A. B., Wechsler S. L. A 371-nucleotide region between the herpes simplex virus type 1 (HSV-1) LAT promoter and the 2-kilobase LAT is not essential for efficient spontaneous reactivation of latent HSV-1. J Virol. 1996 Mar;70(3):2014–2018. doi: 10.1128/jvi.70.3.2014-2018.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sawtell N. M., Thompson R. L. Herpes simplex virus type 1 latency-associated transcription unit promotes anatomical site-dependent establishment and reactivation from latency. J Virol. 1992 Apr;66(4):2157–2169. doi: 10.1128/jvi.66.4.2157-2169.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sedarati F., Izumi K. M., Wagner E. K., Stevens J. G. Herpes simplex virus type 1 latency-associated transcription plays no role in establishment or maintenance of a latent infection in murine sensory neurons. J Virol. 1989 Oct;63(10):4455–4458. doi: 10.1128/jvi.63.10.4455-4458.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stanberry L. R., Kern E. R., Richards J. T., Abbott T. M., Overall J. C., Jr Genital herpes in guinea pigs: pathogenesis of the primary infection and description of recurrent disease. J Infect Dis. 1982 Sep;146(3):397–404. doi: 10.1093/infdis/146.3.397. [DOI] [PubMed] [Google Scholar]
  24. Steiner I., Spivack J. G., Lirette R. P., Brown S. M., MacLean A. R., Subak-Sharpe J. H., Fraser N. W. Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. EMBO J. 1989 Feb;8(2):505–511. doi: 10.1002/j.1460-2075.1989.tb03404.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Steiner I., Spivack J. G., O'Boyle D. R., 2nd, Lavi E., Fraser N. W. Latent herpes simplex virus type 1 transcription in human trigeminal ganglia. J Virol. 1988 Sep;62(9):3493–3496. doi: 10.1128/jvi.62.9.3493-3496.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stevens J. G., Wagner E. K., Devi-Rao G. B., Cook M. L., Feldman L. T. RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science. 1987 Feb 27;235(4792):1056–1059. doi: 10.1126/science.2434993. [DOI] [PubMed] [Google Scholar]
  27. Thompson R. L., Sawtell N. M. The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J Virol. 1997 Jul;71(7):5432–5440. doi: 10.1128/jvi.71.7.5432-5440.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wang K., Krause P. R., Straus S. E. Analysis of the promoter and cis-acting elements regulating expression of herpes simplex virus type 2 latency-associated transcripts. J Virol. 1995 May;69(5):2873–2880. doi: 10.1128/jvi.69.5.2873-2880.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yoshikawa T., Stanberry L. R., Bourne N., Krause P. R. Downstream regulatory elements increase acute and latent herpes simplex virus type 2 latency-associated transcript expression but do not influence recurrence phenotype or establishment of latency. J Virol. 1996 Mar;70(3):1535–1541. doi: 10.1128/jvi.70.3.1535-1541.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES