Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Oct;71(10):8035–8040. doi: 10.1128/jvi.71.10.8035-8040.1997

Localization of a C-terminal region of lambda2 protein in reovirus cores.

C L Luongo 1, K A Dryden 1, D L Farsetta 1, R L Margraf 1, T F Severson 1, N H Olson 1, B N Fields 1, T S Baker 1, M L Nibert 1
PMCID: PMC192168  PMID: 9311901

Abstract

The 144-kDa lambda2 protein is a structural component of mammalian reovirus particles and contains the guanylyltransferase activity involved in adding 5' caps to reovirus mRNAs. After incubation of reovirus T3D core particles at 52 degrees C, the lambda2 protein became sensitive to partial protease degradation. Sequential treatments with heat and chymotrypsin caused degradation of a C-terminal portion of lambda2, leaving a 120K core-associated fragment. The four other proteins in cores--lambda1, lambda3, mu2, and sigma2--were not affected by the treatment. Purified cores with cleaved lambda2 were subjected to transmission cryoelectron microscopy and image reconstruction. Reconstruction analysis demonstrated that a distinctive outer region of lambda2 was missing from the modified cores. The degraded region of lambda2 corresponded to the one that contacts the base of the sigma1 protein fiber in reovirus virions and infectious subvirion particles, suggesting that the sigma1-binding region of lambda2 is near its C terminus. Cores with cleaved lambda2 were shown to retain all activities required to transcribe and cap reovirus mRNAs, indicating that the C-terminal region of lambda2 is dispensable for those functions.

Full Text

The Full Text of this article is available as a PDF (452.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker T. S., Cheng R. H. A model-based approach for determining orientations of biological macromolecules imaged by cryoelectron microscopy. J Struct Biol. 1996 Jan-Feb;116(1):120–130. doi: 10.1006/jsbi.1996.0020. [DOI] [PubMed] [Google Scholar]
  2. Baker T. S., Drak J., Bina M. Reconstruction of the three-dimensional structure of simian virus 40 and visualization of the chromatin core. Proc Natl Acad Sci U S A. 1988 Jan;85(2):422–426. doi: 10.1073/pnas.85.2.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bartlett N. M., Gillies S. C., Bullivant S., Bellamy A. R. Electron microscopy study of reovirus reaction cores. J Virol. 1974 Aug;14(2):315–326. doi: 10.1128/jvi.14.2.315-326.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cashdollar L. W. Characterization and structural localization of the reovirus lambda 3 protein. Res Virol. 1994 Sep-Oct;145(5):277–285. doi: 10.1016/s0923-2516(07)80032-x. [DOI] [PubMed] [Google Scholar]
  5. Cashdollar L. W., Chmelo R., Esparza J., Hudson G. R., Joklik W. K. Molecular cloning of the complete genome of reovirus serotype 3. Virology. 1984 Feb;133(1):191–196. doi: 10.1016/0042-6822(84)90438-0. [DOI] [PubMed] [Google Scholar]
  6. Cleveland D. R., Zarbl H., Millward S. Reovirus guanylyltransferase is L2 gene product lambda 2. J Virol. 1986 Oct;60(1):307–311. doi: 10.1128/jvi.60.1.307-311.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Conway J. F., Trus B. L., Booy F. P., Newcomb W. W., Brown J. C., Steven A. C. The effects of radiation damage on the structure of frozen hydrated HSV-1 capsids. J Struct Biol. 1993 Nov-Dec;111(3):222–233. doi: 10.1006/jsbi.1993.1052. [DOI] [PubMed] [Google Scholar]
  8. Coombs K. M., Fields B. N., Harrison S. C. Crystallization of the reovirus type 3 Dearing core. Crystal packing is determined by the lambda 2 protein. J Mol Biol. 1990 Sep 5;215(1):1–5. doi: 10.1016/s0022-2836(05)80089-0. [DOI] [PubMed] [Google Scholar]
  9. Crowther R. A. Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. Philos Trans R Soc Lond B Biol Sci. 1971 May 27;261(837):221–230. doi: 10.1098/rstb.1971.0054. [DOI] [PubMed] [Google Scholar]
  10. Drayna D., Fields B. N. Activation and characterization of the reovirus transcriptase: genetic analysis. J Virol. 1982 Jan;41(1):110–118. doi: 10.1128/jvi.41.1.110-118.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dryden K. A., Wang G., Yeager M., Nibert M. L., Coombs K. M., Furlong D. B., Fields B. N., Baker T. S. Early steps in reovirus infection are associated with dramatic changes in supramolecular structure and protein conformation: analysis of virions and subviral particles by cryoelectron microscopy and image reconstruction. J Cell Biol. 1993 Sep;122(5):1023–1041. doi: 10.1083/jcb.122.5.1023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fausnaugh J., Shatkin A. J. Active site localization in a viral mRNA capping enzyme. J Biol Chem. 1990 May 5;265(13):7669–7672. [PubMed] [Google Scholar]
  13. Fuller S. D., Butcher S. J., Cheng R. H., Baker T. S. Three-dimensional reconstruction of icosahedral particles--the uncommon line. J Struct Biol. 1996 Jan-Feb;116(1):48–55. doi: 10.1006/jsbi.1996.0009. [DOI] [PubMed] [Google Scholar]
  14. Fuller S. D. The T=4 envelope of Sindbis virus is organized by interactions with a complementary T=3 capsid. Cell. 1987 Mar 27;48(6):923–934. doi: 10.1016/0092-8674(87)90701-x. [DOI] [PubMed] [Google Scholar]
  15. Furuichi Y., Muthukrishnan S., Tomasz J., Shatkin A. J. Mechanism of formation of reovirus mRNA 5'-terminal blocked and methylated sequence, m7GpppGmpC. J Biol Chem. 1976 Aug 25;251(16):5043–5053. [PubMed] [Google Scholar]
  16. Hazelton P. R., Coombs K. M. The reovirus mutant tsA279 has temperature-sensitive lesions in the M2 and L2 genes: the M2 gene is associated with decreased viral protein production and blockade in transmembrane transport. Virology. 1995 Feb 20;207(1):46–58. doi: 10.1006/viro.1995.1050. [DOI] [PubMed] [Google Scholar]
  17. Koonin E. V. Computer-assisted identification of a putative methyltransferase domain in NS5 protein of flaviviruses and lambda 2 protein of reovirus. J Gen Virol. 1993 Apr;74(Pt 4):733–740. doi: 10.1099/0022-1317-74-4-733. [DOI] [PubMed] [Google Scholar]
  18. Lee P. W., Hayes E. C., Joklik W. K. Protein sigma 1 is the reovirus cell attachment protein. Virology. 1981 Jan 15;108(1):156–163. doi: 10.1016/0042-6822(81)90535-3. [DOI] [PubMed] [Google Scholar]
  19. Mao Z. X., Joklik W. K. Isolation and enzymatic characterization of protein lambda 2, the reovirus guanylyltransferase. Virology. 1991 Nov;185(1):377–386. doi: 10.1016/0042-6822(91)90785-a. [DOI] [PubMed] [Google Scholar]
  20. Morgan E. M., Zweerink H. J. Reovirus morphogenesis. Corelike particles in cells infected at 39 degrees with wild-type reovirus and temperature-sensitive mutants of groups B and G. Virology. 1974 Jun;59(2):556–565. doi: 10.1016/0042-6822(74)90465-6. [DOI] [PubMed] [Google Scholar]
  21. Nibert M. L., Margraf R. L., Coombs K. M. Nonrandom segregation of parental alleles in reovirus reassortants. J Virol. 1996 Oct;70(10):7295–7300. doi: 10.1128/jvi.70.10.7295-7300.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Noble S., Nibert M. L. Characterization of an ATPase activity in reovirus cores and its genetic association with core-shell protein lambda1. J Virol. 1997 Mar;71(3):2182–2191. doi: 10.1128/jvi.71.3.2182-2191.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Noble S., Nibert M. L. Core protein mu2 is a second determinant of nucleoside triphosphatase activities by reovirus cores. J Virol. 1997 Oct;71(10):7728–7735. doi: 10.1128/jvi.71.10.7728-7735.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pett D. M., Vanaman T. C., Joklik W. K. Studies on the amino and carboxyl terminal amino acid sequences of reovirus capsid polypeptides. Virology. 1973 Mar;52(1):174–186. doi: 10.1016/0042-6822(73)90407-8. [DOI] [PubMed] [Google Scholar]
  25. Seliger L. S., Zheng K., Shatkin A. J. Complete nucleotide sequence of reovirus L2 gene and deduced amino acid sequence of viral mRNA guanylyltransferase. J Biol Chem. 1987 Dec 5;262(34):16289–16293. [PubMed] [Google Scholar]
  26. Smith R. E., Zweerink H. J., Joklik W. K. Polypeptide components of virions, top component and cores of reovirus type 3. Virology. 1969 Dec;39(4):791–810. doi: 10.1016/0042-6822(69)90017-8. [DOI] [PubMed] [Google Scholar]
  27. Starnes M. C., Joklik W. K. Reovirus protein lambda 3 is a poly(C)-dependent poly(G) polymerase. Virology. 1993 Mar;193(1):356–366. doi: 10.1006/viro.1993.1132. [DOI] [PubMed] [Google Scholar]
  28. Virgin H. W., 4th, Mann M. A., Fields B. N., Tyler K. L. Monoclonal antibodies to reovirus reveal structure/function relationships between capsid proteins and genetics of susceptibility to antibody action. J Virol. 1991 Dec;65(12):6772–6781. doi: 10.1128/jvi.65.12.6772-6781.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. White C. K., Zweerink H. J. Studies on the structure of reovirus cores: selective removal of polypeptide lambda 2. Virology. 1976 Mar;70(1):171–180. doi: 10.1016/0042-6822(76)90247-6. [DOI] [PubMed] [Google Scholar]
  30. Xu P., Miller S. E., Joklik W. K. Generation of reovirus core-like particles in cells infected with hybrid vaccinia viruses that express genome segments L1, L2, L3, and S2. Virology. 1993 Dec;197(2):726–731. doi: 10.1006/viro.1993.1648. [DOI] [PubMed] [Google Scholar]
  31. Yin P., Cheang M., Coombs K. M. The M1 gene is associated with differences in the temperature optimum of the transcriptase activity in reovirus core particles. J Virol. 1996 Feb;70(2):1223–1227. doi: 10.1128/jvi.70.2.1223-1227.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zou S., Brown E. G. Stable expression of the reovirus mu2 protein in mouse L cells complements the growth of a reovirus ts mutant with a defect in its M1 gene. Virology. 1996 Mar 1;217(1):42–48. doi: 10.1006/viro.1996.0091. [DOI] [PubMed] [Google Scholar]
  33. Zweerink H. J., Joklik W. K. Studies on the intracellular synthesis of reovirus-specified proteins. Virology. 1970 Jul;41(3):501–518. doi: 10.1016/0042-6822(70)90171-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES