Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Oct;71(10):8066–8072. doi: 10.1128/jvi.71.10.8066-8072.1997

Biochemical characterization of a smaller form of recombinant Norwalk virus capsids assembled in insect cells.

L J White 1, M E Hardy 1, M K Estes 1
PMCID: PMC192173  PMID: 9311906

Abstract

The expression of the single capsid protein of Norwalk virus (NV) in Spodoptera frugiperda (Sf9) insect cells infected with recombinant baculovirus results in the assembly of virus-like particles (VLPs) of two sizes, the predominant 38-nm, or virion-size VLPs, and smaller, 23-nm VLPs. Here we describe the purification and biochemical characterization of the 23-nm VLPs. The 23-nm VLPs were purified to 95% homogeneity from the medium of Sf9 cultures by isopycnic CsCl gradient centrifugation followed by rate-zonal centrifugation in sucrose gradients. The compositions of the purified 23- and 38-nm VLPs were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and protein immunoblots. VLPs of both sizes showed a doublet at 58 kDa, the size of the full-length capsid protein. Upon alkaline treatment, the 23-nm VLPs underwent dissociation into soluble intermediates that were able to reassemble into 23- and 38-nm VLPs upon dialysis, suggesting that the assembly of both types of structures has a common pathway. Antigenic and biochemical properties of the 38- and 23-nm VLPs were examined and found to be conserved. Immunoprecipitation assays using polyclonal and monoclonal antibodies indicated that immunodominant epitopes on the capsid protein as well as conformational epitopes are conserved in the two types of particles. The trypsin cleavage site at residue 227 was protected in the assembled particles of both sizes but exposed after alkaline dissociation. These results, and the conservation of the binding activity of both forms of recombinant NV VLPs to cultured cells (L. J. White, J. M. Ball, M. E. Hardy, T. N. Tanaka, N. Kitamoto, and M. K. Estes, J. Virol. 70:6589-6597, 1996), suggest that the tertiary folding of the capsid protein responsible for these properties is conserved in the two structures. We hypothesize that the 23-nm VLPs are formed when 60 units of the NV capsid protein assembles into a structure with T=1 symmetry.

Full Text

The Full Text of this article is available as a PDF (425.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Capucci L., Frigoli G., Rønshold L., Lavazza A., Brocchi E., Rossi C. Antigenicity of the rabbit hemorrhagic disease virus studied by its reactivity with monoclonal antibodies. Virus Res. 1995 Aug;37(3):221–238. doi: 10.1016/0168-1702(95)00033-m. [DOI] [PubMed] [Google Scholar]
  2. Capucci L., Scicluna M. T., Lavazza A. Diagnosis of viral haemorrhagic disease of rabbits and the European brown hare syndrome. Rev Sci Tech. 1991 Jun;10(2):347–370. doi: 10.20506/rst.10.2.561. [DOI] [PubMed] [Google Scholar]
  3. Dingle K. E., Lambden P. R., Caul E. O., Clarke I. N. Human enteric Caliciviridae: the complete genome sequence and expression of virus-like particles from a genetic group II small round structured virus. J Gen Virol. 1995 Sep;76(Pt 9):2349–2355. doi: 10.1099/0022-1317-76-9-2349. [DOI] [PubMed] [Google Scholar]
  4. Erickson J. W., Silva A. M., Murthy M. R., Fita I., Rossmann M. G. The structure of a T = 1 icosahedral empty particle from southern bean mosaic virus. Science. 1985 Aug 16;229(4714):625–629. doi: 10.1126/science.4023701. [DOI] [PubMed] [Google Scholar]
  5. Fukuyama K., Abdel-Meguid S. S., Rossmann M. G. Crystallization of alfalfa mosaic virus coat protein as a T = 1 aggregate. J Mol Biol. 1981 Jul 25;150(1):33–41. doi: 10.1016/0022-2836(81)90323-5. [DOI] [PubMed] [Google Scholar]
  6. Granzow H., Weiland F., Strebelow H. G., Liu C. M., Schirrmeier H. Rabbit hemorrhagic disease virus (RHDV): ultrastructure and biochemical studies of typical and core-like particles present in liver homogenates. Virus Res. 1996 Apr;41(2):163–172. doi: 10.1016/0168-1702(96)01285-3. [DOI] [PubMed] [Google Scholar]
  7. Hardy M. E., Tanaka T. N., Kitamoto N., White L. J., Ball J. M., Jiang X., Estes M. K. Antigenic mapping of the recombinant Norwalk virus capsid protein using monoclonal antibodies. Virology. 1996 Mar 1;217(1):252–261. doi: 10.1006/viro.1996.0112. [DOI] [PubMed] [Google Scholar]
  8. Hardy M. E., White L. J., Ball J. M., Estes M. K. Specific proteolytic cleavage of recombinant Norwalk virus capsid protein. J Virol. 1995 Mar;69(3):1693–1698. doi: 10.1128/jvi.69.3.1693-1698.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jiang X., Matson D. O., Ruiz-Palacios G. M., Hu J., Treanor J., Pickering L. K. Expression, self-assembly, and antigenicity of a snow mountain agent-like calicivirus capsid protein. J Clin Microbiol. 1995 Jun;33(6):1452–1455. doi: 10.1128/jcm.33.6.1452-1455.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jiang X., Wang J., Estes M. K. Characterization of SRSVs using RT-PCR and a new antigen ELISA. Arch Virol. 1995;140(2):363–374. doi: 10.1007/BF01309870. [DOI] [PubMed] [Google Scholar]
  11. Jiang X., Wang M., Graham D. Y., Estes M. K. Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J Virol. 1992 Nov;66(11):6527–6532. doi: 10.1128/jvi.66.11.6527-6532.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jiang X., Wang M., Wang K., Estes M. K. Sequence and genomic organization of Norwalk virus. Virology. 1993 Jul;195(1):51–61. doi: 10.1006/viro.1993.1345. [DOI] [PubMed] [Google Scholar]
  13. Leite J. P., Ando T., Noel J. S., Jiang B., Humphrey C. D., Lew J. F., Green K. Y., Glass R. I., Monroe S. S. Characterization of Toronto virus capsid protein expressed in baculovirus. Arch Virol. 1996;141(5):865–875. doi: 10.1007/BF01718161. [DOI] [PubMed] [Google Scholar]
  14. Olson N. H., Baker T. S. Magnification calibration and the determination of spherical virus diameters using cryo-microscopy. Ultramicroscopy. 1989 Jul-Aug;30(3):281–297. doi: 10.1016/0304-3991(89)90057-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Prasad B. V., Rothnagel R., Jiang X., Estes M. K. Three-dimensional structure of baculovirus-expressed Norwalk virus capsids. J Virol. 1994 Aug;68(8):5117–5125. doi: 10.1128/jvi.68.8.5117-5125.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sorger P. K., Stockley P. G., Harrison S. C. Structure and assembly of turnip crinkle virus. II. Mechanism of reassembly in vitro. J Mol Biol. 1986 Oct 20;191(4):639–658. doi: 10.1016/0022-2836(86)90451-1. [DOI] [PubMed] [Google Scholar]
  17. Taniguchi K., Urasawa S., Urasawa T. Further studies of 35--40 nm virus-like particles associated with outbreaks of acute gastroenteritis. J Med Microbiol. 1981 Feb;14(1):107–118. doi: 10.1099/00222615-14-1-107. [DOI] [PubMed] [Google Scholar]
  18. White L. J., Ball J. M., Hardy M. E., Tanaka T. N., Kitamoto N., Estes M. K. Attachment and entry of recombinant Norwalk virus capsids to cultured human and animal cell lines. J Virol. 1996 Oct;70(10):6589–6597. doi: 10.1128/jvi.70.10.6589-6597.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES