Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Oct;71(10):8073–8077. doi: 10.1128/jvi.71.10.8073-8077.1997

Localization of the labile disulfide bond between SU and TM of the murine leukemia virus envelope protein complex to a highly conserved CWLC motif in SU that resembles the active-site sequence of thiol-disulfide exchange enzymes.

A Pinter 1, R Kopelman 1, Z Li 1, S C Kayman 1, D A Sanders 1
PMCID: PMC192174  PMID: 9311907

Abstract

Previous studies have indicated that the surface (SU) and transmembrane (TM) subunits of the envelope protein (Env) of murine leukemia viruses (MuLVs) are joined by a labile disulfide bond that can be stabilized by treatment of virions with thiol-specific reagents. In the present study this observation was extended to the Envs of additional classes of MuLV, and the cysteines of SU involved in this linkage were mapped by proteolytic fragmentation analyses to the CWLC sequence present at the beginning of the C-terminal domain of SU. This sequence is highly conserved across a broad range of distantly related retroviruses and resembles the CXXC motif present at the active site of thiol-disulfide exchange enzymes. A model is proposed in which rearrangements of the SU-TM intersubunit disulfide linkage, mediated by the CWLC sequence, play roles in the assembly and function of the Env complex.

Full Text

The Full Text of this article is available as a PDF (629.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abell B. A., Brown D. T. Sindbis virus membrane fusion is mediated by reduction of glycoprotein disulfide bridges at the cell surface. J Virol. 1993 Sep;67(9):5496–5501. doi: 10.1128/jvi.67.9.5496-5501.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bardwell J. C., Beckwith J. The bonds that tie: catalyzed disulfide bond formation. Cell. 1993 Sep 10;74(5):769–771. doi: 10.1016/0092-8674(93)90455-y. [DOI] [PubMed] [Google Scholar]
  3. Bardwell J. C., Lee J. O., Jander G., Martin N., Belin D., Beckwith J. A pathway for disulfide bond formation in vivo. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1038–1042. doi: 10.1073/pnas.90.3.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brody B. A., Kimball M. G., Hunter E. Mutations within the transmembrane glycoprotein of Mason-Pfizer monkey virus: loss of SU-TM association and effects on infectivity. Virology. 1994 Aug 1;202(2):673–683. doi: 10.1006/viro.1994.1389. [DOI] [PubMed] [Google Scholar]
  5. Chivers P. T., Laboissière M. C., Raines R. T. The CXXC motif: imperatives for the formation of native disulfide bonds in the cell. EMBO J. 1996 Jun 3;15(11):2659–2667. [PMC free article] [PubMed] [Google Scholar]
  6. Fass D., Kim P. S. Dissection of a retrovirus envelope protein reveals structural similarity to influenza hemagglutinin. Curr Biol. 1995 Dec 1;5(12):1377–1383. doi: 10.1016/s0960-9822(95)00275-2. [DOI] [PubMed] [Google Scholar]
  7. Felkner R. H., Roth M. J. Mutational analysis of the N-linked glycosylation sites of the SU envelope protein of Moloney murine leukemia virus. J Virol. 1992 Jul;66(7):4258–4264. doi: 10.1128/jvi.66.7.4258-4264.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Freedman R. B., Hirst T. R., Tuite M. F. Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci. 1994 Aug;19(8):331–336. doi: 10.1016/0968-0004(94)90072-8. [DOI] [PubMed] [Google Scholar]
  9. Gallaher W. R., Ball J. M., Garry R. F., Martin-Amedee A. M., Montelaro R. C. A general model for the surface glycoproteins of HIV and other retroviruses. AIDS Res Hum Retroviruses. 1995 Feb;11(2):191–202. doi: 10.1089/aid.1995.11.191. [DOI] [PubMed] [Google Scholar]
  10. Geyer R., Dabrowski J., Dabrowski U., Linder D., Schlüter M., Schott H. H., Stirm S. Oligosaccharides at individual glycosylation sites in glycoprotein 71 of Friend murine leukemia virus. Eur J Biochem. 1990 Jan 12;187(1):95–110. doi: 10.1111/j.1432-1033.1990.tb15281.x. [DOI] [PubMed] [Google Scholar]
  11. Gretch D. R., Gehrz R. C., Stinski M. F. Characterization of a human cytomegalovirus glycoprotein complex (gcI). J Gen Virol. 1988 Jun;69(Pt 6):1205–1215. doi: 10.1099/0022-1317-69-6-1205. [DOI] [PubMed] [Google Scholar]
  12. Gruber C., Levine S. Respiratory syncytial virus polypeptides. III. The envelope-associated proteins. J Gen Virol. 1983 Apr;64(Pt 4):825–832. doi: 10.1099/0022-1317-64-4-825. [DOI] [PubMed] [Google Scholar]
  13. Gu J., Parthasarathi S., Varela-Echavarría A., Ron Y., Dougherty J. P. Mutations of conserved cysteine residues in the CWLC motif of the oncoretrovirus SU protein affect maturation and translocation. Virology. 1995 Feb 1;206(2):885–893. doi: 10.1006/viro.1995.1011. [DOI] [PubMed] [Google Scholar]
  14. Hancock J. F., Magee A. I., Childs J. E., Marshall C. J. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell. 1989 Jun 30;57(7):1167–1177. doi: 10.1016/0092-8674(89)90054-8. [DOI] [PubMed] [Google Scholar]
  15. Hardwick J. M., Bussell R. H. Glycoproteins of measles virus under reducing and nonreducing conditions. J Virol. 1978 Feb;25(2):687–692. doi: 10.1128/jvi.25.2.687-692.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Johansson J., Curstedt T., Jörnvall H. Surfactant protein B: disulfide bridges, structural properties, and kringle similarities. Biochemistry. 1991 Jul 16;30(28):6917–6921. doi: 10.1021/bi00242a015. [DOI] [PubMed] [Google Scholar]
  17. Kayman S. C., Kopelman R., Projan S., Kinney D. M., Pinter A. Mutational analysis of N-linked glycosylation sites of Friend murine leukemia virus envelope protein. J Virol. 1991 Oct;65(10):5323–5332. doi: 10.1128/jvi.65.10.5323-5332.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Koch W., Hunsmann G., Friedrich R. Nucleotide sequence of the envelope gene of Friend murine leukemia virus. J Virol. 1983 Jan;45(1):1–9. doi: 10.1128/jvi.45.1.1-9.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Leamnson R. N., Halpern M. S. Subunit structure of the glycoprotein complex of avian tumor virus. J Virol. 1976 Jun;18(3):956–968. doi: 10.1128/jvi.18.3.956-968.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Li Z., Pinter A., Kayman S. C. The critical N-linked glycan of murine leukemia virus envelope protein promotes both folding of the C-terminal domains of the precursor polyprotein and stability of the postcleavage envelope complex. J Virol. 1997 Sep;71(9):7012–7019. doi: 10.1128/jvi.71.9.7012-7019.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Linder M., Linder D., Hahnen J., Schott H. H., Stirm S. Localization of the intrachain disulfide bonds of the envelope glycoprotein 71 from Friend murine leukemia virus. Eur J Biochem. 1992 Jan 15;203(1-2):65–73. doi: 10.1111/j.1432-1033.1992.tb19828.x. [DOI] [PubMed] [Google Scholar]
  22. Linder M., Wenzel V., Linder D., Stirm S. Structural elements in glycoprotein 70 from polytropic Friend mink cell focus-inducing virus and glycoprotein 71 from ecotropic Friend murine leukemia virus, as defined by disulfide-bonding pattern and limited proteolysis. J Virol. 1994 Aug;68(8):5133–5141. doi: 10.1128/jvi.68.8.5133-5141.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Malik K. T., Even J., Karpas A. Molecular cloning and complete nucleotide sequence of an adult T cell leukaemia virus/human T cell leukaemia virus type I (ATLV/HTLV-I) isolate of Caribbean origin: relationship to other members of the ATLV/HTLV-I subgroup. J Gen Virol. 1988 Jul;69(Pt 7):1695–1710. doi: 10.1099/0022-1317-69-7-1695. [DOI] [PubMed] [Google Scholar]
  24. Meredith D. M., Stocks J. M., Whittaker G. R., Halliburton I. W., Snowden B. W., Killington R. A. Identification of the gB homologues of equine herpesvirus types 1 and 4 as disulphide-linked heterodimers and their characterization using monoclonal antibodies. J Gen Virol. 1989 May;70(Pt 5):1161–1172. doi: 10.1099/0022-1317-70-5-1161. [DOI] [PubMed] [Google Scholar]
  25. Montelaro R. C., Sullivan S. J., Bolognesi D. P. An analysis of type-C retrovirus polypeptides and their associations in the virion. Virology. 1978 Jan;84(1):19–31. doi: 10.1016/0042-6822(78)90215-5. [DOI] [PubMed] [Google Scholar]
  26. Pinter A., Fleissner E. Structural studies of retroviruses: characterization of oligomeric complexes of murine and feline leukemia virus envelope and core components formed upon cross-linking. J Virol. 1979 Apr;30(1):157–165. doi: 10.1128/jvi.30.1.157-165.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pinter A., Fleissner E. The presence of disulfide-linked gp70-p15(E) complexes in AKR murine leukemia virus. Virology. 1977 Dec;83(2):417–422. doi: 10.1016/0042-6822(77)90187-8. [DOI] [PubMed] [Google Scholar]
  28. Pinter A., Honnen W. J. Characterization of structural and immunological properties of specific domains of Friend ecotropic and dual-tropic murine leukemia virus gp70s. J Virol. 1984 Feb;49(2):452–458. doi: 10.1128/jvi.49.2.452-458.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pinter A., Honnen W. J. Comparison of structural domains of gp70s of ecotropic Akv and dualtropic MCF-247 MuLVs. Virology. 1983 Aug;129(1):40–50. doi: 10.1016/0042-6822(83)90394-x. [DOI] [PubMed] [Google Scholar]
  30. Pinter A., Honnen W. J. O-linked glycosylation of retroviral envelope gene products. J Virol. 1988 Mar;62(3):1016–1021. doi: 10.1128/jvi.62.3.1016-1021.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pinter A., Lieman-Hurwitz J., Fleissner E. The nature of the association between the murine leukemia virus envelope proteins. Virology. 1978 Dec;91(2):345–351. doi: 10.1016/0042-6822(78)90382-3. [DOI] [PubMed] [Google Scholar]
  32. Rice N. R., Stephens R. M., Couez D., Deschamps J., Kettmann R., Burny A., Gilden R. V. The nucleotide sequence of the env gene and post-env region of bovine leukemia virus. Virology. 1984 Oct 15;138(1):82–93. doi: 10.1016/0042-6822(84)90149-1. [DOI] [PubMed] [Google Scholar]
  33. Ryser H. J., Levy E. M., Mandel R., DiSciullo G. J. Inhibition of human immunodeficiency virus infection by agents that interfere with thiol-disulfide interchange upon virus-receptor interaction. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4559–4563. doi: 10.1073/pnas.91.10.4559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sahlman L., Skärfstad E. G. Mercuric ion binding abilities of MerP variants containing only one cysteine. Biochem Biophys Res Commun. 1993 Oct 29;196(2):583–588. doi: 10.1006/bbrc.1993.2289. [DOI] [PubMed] [Google Scholar]
  35. Scheid A., Choppin P. W. Two disulfide-linked polypeptide chains constitute the active F protein of paramyxoviruses. Virology. 1977 Jul 1;80(1):54–66. doi: 10.1016/0042-6822(77)90380-4. [DOI] [PubMed] [Google Scholar]
  36. Sodroski J., Patarca R., Perkins D., Briggs D., Lee T. H., Essex M., Coligan J., Wong-Staal F., Gallo R. C., Haseltine W. A. Sequence of the envelope glycoprotein gene of type II human T lymphotropic virus. Science. 1984 Jul 27;225(4660):421–424. doi: 10.1126/science.6204380. [DOI] [PubMed] [Google Scholar]
  37. Storey D. G., Dimock K., Kang C. Y. Structural characterization of virion proteins and genomic RNA of human parainfluenza virus 3. J Virol. 1984 Dec;52(3):761–766. doi: 10.1128/jvi.52.3.761-766.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Thomas A., Roth M. J. Analysis of cysteine mutations on the transmembrane protein of Moloney murine leukemia virus. Virology. 1995 Aug 1;211(1):285–289. doi: 10.1006/viro.1995.1402. [DOI] [PubMed] [Google Scholar]
  39. Waterfield M., Scrace G., Skehel J. Disulphide bonds of haemagglutinin of Asian influenza virus. Nature. 1981 Jan 29;289(5796):422–424. doi: 10.1038/289422a0. [DOI] [PubMed] [Google Scholar]
  40. Waxham M. N., Wolinsky J. S. Immunochemical identification of rubella virus hemagglutinin. Virology. 1983 Apr 15;126(1):194–203. doi: 10.1016/0042-6822(83)90471-3. [DOI] [PubMed] [Google Scholar]
  41. Weber E., Papamokos E., Bode W., Huber R., Kato I., Laskowski M., Jr Crystallization, crystal structure analysis and molecular model of the third domain of Japanese quail ovomucoid, a Kazal type inhibitor. J Mol Biol. 1981 Jun 15;149(1):109–123. doi: 10.1016/0022-2836(81)90263-1. [DOI] [PubMed] [Google Scholar]
  42. Witte O. N., Tsukamoto-Adey A., Weissman I. L. Cellular maturation of oncornavirus glycoproteins: topological arrangement of precursor and product forms in cellular membranes. Virology. 1977 Feb;76(2):539–553. doi: 10.1016/0042-6822(77)90236-7. [DOI] [PubMed] [Google Scholar]
  43. Zapun A., Bardwell J. C., Creighton T. E. The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Biochemistry. 1993 May 18;32(19):5083–5092. doi: 10.1021/bi00070a016. [DOI] [PubMed] [Google Scholar]
  44. van Drunen Littel-van den Hurk S., Babiuk L. A. Synthesis and processing of bovine herpesvirus 1 glycoproteins. J Virol. 1986 Aug;59(2):401–410. doi: 10.1128/jvi.59.2.401-410.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES