Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1993 Oct;37(10):2132–2138. doi: 10.1128/aac.37.10.2132

Influence of rifampin on fleroxacin pharmacokinetics.

J Schrenzel 1, P Dayer 1, T Leemann 1, E Weidekamm 1, R Portmann 1, D P Lew 1
PMCID: PMC192240  PMID: 8257135

Abstract

Staphylococcus aureus infections have been successfully treated in animal models with the combination of fleroxacin and rifampin. We studied the influence of rifampin, a potent cytochrome P-450 inducer, on the pharmacokinetics and biotransformation of fleroxacin in 14 healthy young male volunteers. Subjects were given 400 mg of fleroxacin orally once a day for 3 days to reach steady state. After a wash-out period of 2 days, the same subjects received 600 mg of rifampin orally once daily for 7 days. On days 5 to 7 of rifampin treatment, 400 mg of fleroxacin was again administered once daily. Concentrations of fleroxacin as well as its two major urinary metabolites, N-demethyl- and N-oxide-fleroxacin, in plasma and urine were determined by reverse-phase high-performance liquid chromatography. The extent of hepatic enzyme induction by rifampin was confirmed by a significant increase of 6-beta-hydroxycortisol urinary output from 160.8 +/- 41.4 to 544.8 +/- 120.7 micrograms/4 h. There were no significant changes in the peak fleroxacin concentration in plasma (6.3 +/- 1.2 versus 6.2 +/- 1.9 mg/liter), time to maximum concentration of fleroxacin in plasma (1.1 +/- 0.9 versus 1.3 +/- 1.1 h), or renal clearance (58.3 +/- 16.4 versus 61.9 +/- 19.2 ml/min). The area under the curve AUC (71.4 +/- 15.8 versus 62.2 +/- 13.7 mg.h/liter) and the terminal half-life of fleroxacin (11.4 +/- 2.2 versus 9.2 +/- 1.1 h) decreased (P < 0.05), while the total plasma clearance increased from 97.7 +/- 21.6 to 112.3 +/- 25.8 ml/min (P < 0.01). Despite being statistically significant, this 15% increase in total plasma clearance does not appear to be clinically relevant. Metabolic clearance by N demethylation was increased ( 6.9 +/- 2.4 versus 12.5 +/- 3.2 ml/min; P < 0.01), whereas clearance by N oxidation did not change (5.8 +/- 1.1 versus 5.8 +/- 1.5 ml/min). Fleroxacin elimination was slightly increased (about 15%) through induction of metabolic clearance to N-demethyl-fleroxacin. Since fleroxacin levels remained above the MIC for 90% of the tested isolates of methicillin-susceptible S. aureus for at least 24 h, dose adjustment does not appear necessary, at least for short-term treatments.

Full text

PDF
2132

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acocella G. Pharmacokinetics and metabolism of rifampin in humans. Rev Infect Dis. 1983 Jul-Aug;5 (Suppl 3):S428–S432. doi: 10.1093/clinids/5.supplement_3.s428. [DOI] [PubMed] [Google Scholar]
  2. Baciewicz A. M., Self T. H. Rifampin drug interactions. Arch Intern Med. 1984 Aug;144(8):1667–1671. doi: 10.1001/archinte.144.8.1667. [DOI] [PubMed] [Google Scholar]
  3. Barriere S. L., Kaatz G. W., Seo S. M. Enhanced elimination of ciprofloxacin after multiple-dose administration of rifampin to rabbits. Antimicrob Agents Chemother. 1989 Apr;33(4):589–590. doi: 10.1128/aac.33.4.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beam T. R., Jr Sequestration of staphylococci at an inaccessible focus. Lancet. 1979 Aug 4;2(8136):227–228. doi: 10.1016/s0140-6736(79)90239-3. [DOI] [PubMed] [Google Scholar]
  5. Blumberg H. M., Rimland D., Carroll D. J., Terry P., Wachsmuth I. K. Rapid development of ciprofloxacin resistance in methicillin-susceptible and -resistant Staphylococcus aureus. J Infect Dis. 1991 Jun;163(6):1279–1285. doi: 10.1093/infdis/163.6.1279. [DOI] [PubMed] [Google Scholar]
  6. Chandler M. H., Toler S. M., Rapp R. P., Muder R. R., Korvick J. A. Multiple-dose pharmacokinetics of concurrent oral ciprofloxacin and rifampin therapy in elderly patients. Antimicrob Agents Chemother. 1990 Mar;34(3):442–447. doi: 10.1128/aac.34.3.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chuard C., Herrmann M., Vaudaux P., Waldvogel F. A., Lew D. P. Successful therapy of experimental chronic foreign-body infection due to methicillin-resistant Staphylococcus aureus by antimicrobial combinations. Antimicrob Agents Chemother. 1991 Dec;35(12):2611–2616. doi: 10.1128/aac.35.12.2611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cockcroft D. W., Gault M. H. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41. doi: 10.1159/000180580. [DOI] [PubMed] [Google Scholar]
  9. Daum T. E., Schaberg D. R., Terpenning M. S., Sottile W. S., Kauffman C. A. Increasing resistance of Staphylococcus aureus to ciprofloxacin. Antimicrob Agents Chemother. 1990 Sep;34(9):1862–1863. doi: 10.1128/aac.34.9.1862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dellamonica P., Bernard E., Etesse H., Garraffo R., Drugeon H. B. Evaluation of pefloxacin, ofloxacin and ciprofloxacin in the treatment of thirty-nine cases of chronic osteomyelitis. Eur J Clin Microbiol Infect Dis. 1989 Dec;8(12):1024–1030. doi: 10.1007/BF01975163. [DOI] [PubMed] [Google Scholar]
  11. Desplaces N., Acar J. F. New quinolones in the treatment of joint and bone infections. Rev Infect Dis. 1988 Jan-Feb;10 (Suppl 1):S179–S183. doi: 10.1093/clinids/10.supplement_1.s179. [DOI] [PubMed] [Google Scholar]
  12. Desplaces N., Gutmann L., Carlet J., Guibert J., Acar J. F. The new quinolones and their combinations with other agents for therapy of severe infections. J Antimicrob Chemother. 1986 Mar;17 (Suppl A):25–39. doi: 10.1093/jac/17.suppl_a.25. [DOI] [PubMed] [Google Scholar]
  13. Dworkin R. J., Lee B. L., Sande M. A., Chambers H. F. Treatment of right-sided Staphylococcus aureus endocarditis in intravenous drug users with ciprofloxacin and rifampicin. Lancet. 1989 Nov 4;2(8671):1071–1073. doi: 10.1016/s0140-6736(89)91083-0. [DOI] [PubMed] [Google Scholar]
  14. Dworkin R., Modin G., Kunz S., Rich R., Zak O., Sande M. Comparative efficacies of ciprofloxacin, pefloxacin, and vancomycin in combination with rifampin in a rat model of methicillin-resistant Staphylococcus aureus chronic osteomyelitis. Antimicrob Agents Chemother. 1990 Jun;34(6):1014–1016. doi: 10.1128/aac.34.6.1014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ged C., Rouillon J. M., Pichard L., Combalbert J., Bressot N., Bories P., Michel H., Beaune P., Maurel P. The increase in urinary excretion of 6 beta-hydroxycortisol as a marker of human hepatic cytochrome P450IIIA induction. Br J Clin Pharmacol. 1989 Oct;28(4):373–387. doi: 10.1111/j.1365-2125.1989.tb03516.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gentry L. O., Rodriguez-Gomez G. Ofloxacin versus parenteral therapy for chronic osteomyelitis. Antimicrob Agents Chemother. 1991 Mar;35(3):538–541. doi: 10.1128/aac.35.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gentry L. O., Rodriguez G. G. Oral ciprofloxacin compared with parenteral antibiotics in the treatment of osteomyelitis. Antimicrob Agents Chemother. 1990 Jan;34(1):40–43. doi: 10.1128/aac.34.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Griggs D. J., Wise R., Kirkpatrick B., Ashby J. P. The metabolism and pharmacokinetics of fleroxacin in healthy subjects. J Antimicrob Chemother. 1988 Oct;22 (Suppl 500):191–194. doi: 10.1093/jac/22.supplement_d.191. [DOI] [PubMed] [Google Scholar]
  19. Hackbarth C. J., Chambers H. F., Sande M. A. Serum bactericidal activity of rifampin in combination with other antimicrobial agents against Staphylococcus aureus. Antimicrob Agents Chemother. 1986 Apr;29(4):611–613. doi: 10.1128/aac.29.4.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Henry N. K., Rouse M. S., Whitesell A. L., McConnell M. E., Wilson W. R. Treatment of methicillin-resistant Staphylococcus aureus experimental osteomyelitis with ciprofloxacin or vancomycin alone or in combination with rifampin. Am J Med. 1987 Apr 27;82(4A):73–75. [PubMed] [Google Scholar]
  21. Humbert G., Brumpt I., Montay G., Le Liboux A., Frydman A., Borsa-Lebas F., Moore N. Influence of rifampin on the pharmacokinetics of pefloxacin. Clin Pharmacol Ther. 1991 Dec;50(6):682–687. doi: 10.1038/clpt.1991.207. [DOI] [PubMed] [Google Scholar]
  22. Kaatz G. W., Barriere S. L., Schaberg D. R., Fekety R. The emergence of resistance to ciprofloxacin during treatment of experimental Staphylococcus aureus endocarditis. J Antimicrob Chemother. 1987 Nov;20(5):753–758. doi: 10.1093/jac/20.5.753. [DOI] [PubMed] [Google Scholar]
  23. Kaatz G. W., Seo S. M., Barriere S. L., Albrecht L. M., Rybak M. J. Ciprofloxacin and rifampin, alone and in combination, for therapy of experimental Staphylococcus aureus endocarditis. Antimicrob Agents Chemother. 1989 Aug;33(8):1184–1187. doi: 10.1128/aac.33.8.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ketterl R., Beckurts T., Stübinger B., Claudi B. Use of ofloxacin in open fractures and in the treatment of post-traumatic osteomyelitis. J Antimicrob Chemother. 1988 Sep;22 (Suppl 100):159–166. doi: 10.1093/jac/22.supplement_c.159. [DOI] [PubMed] [Google Scholar]
  25. Lucet J. C., Herrmann M., Rohner P., Auckenthaler R., Waldvogel F. A., Lew D. P. Treatment of experimental foreign body infection caused by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1990 Dec;34(12):2312–2317. doi: 10.1128/aac.34.12.2312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mandell G. L., Moorman D. R. Treatment of experimental staphylococcal infections: effect of rifampin alone and in combination on development of rifampin resistance. Antimicrob Agents Chemother. 1980 Apr;17(4):658–662. doi: 10.1128/aac.17.4.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mandell G. L. The antimicrobial activity of rifampin: emphasis on the relation to phagocytes. Rev Infect Dis. 1983 Jul-Aug;5 (Suppl 3):S463–S467. doi: 10.1093/clinids/5.supplement_3.s463. [DOI] [PubMed] [Google Scholar]
  28. McManus M. E., Stupans I., Burgess W., Koenig J. A., Hall P. M., Birkett D. J. Flavin-containing monooxygenase activity in human liver microsomes. Drug Metab Dispos. 1987 Mar-Apr;15(2):256–261. [PubMed] [Google Scholar]
  29. Michot F., Bürgi M., Büttner J. Rimactan (Rifampizin) und Antikoagulantientherapie. Schweiz Med Wochenschr. 1970 Mar 28;100(13):583–584. [PubMed] [Google Scholar]
  30. Nakashima M., Kanamaru M., Uematsu T., Takiguchi A., Mizuno A., Itaya T., Kawahara F., Ooie T., Saito S., Uchida H. Clinical pharmacokinetics and tolerance of fleroxacin in healthy male volunteers. J Antimicrob Chemother. 1988 Oct;22 (Suppl 500):133–144. doi: 10.1093/jac/22.supplement_d.133. [DOI] [PubMed] [Google Scholar]
  31. Nebert D. W., Nelson D. R., Coon M. J., Estabrook R. W., Feyereisen R., Fujii-Kuriyama Y., Gonzalez F. J., Guengerich F. P., Gunsalus I. C., Johnson E. F. The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol. 1991 Jan-Feb;10(1):1–14. doi: 10.1089/dna.1991.10.1. [DOI] [PubMed] [Google Scholar]
  32. Neu H. C. Synergy of fluoroquinolones with other antimicrobial agents. Rev Infect Dis. 1989 Jul-Aug;11 (Suppl 5):S1025–S1035. doi: 10.1093/clinids/11.supplement_5.s1025. [DOI] [PubMed] [Google Scholar]
  33. O'Reilly R. A. Interaction of chronic daily warfarin therapy and rifampin. Ann Intern Med. 1975 Oct;83(4):506–508. doi: 10.7326/0003-4819-83-4-506. [DOI] [PubMed] [Google Scholar]
  34. Rohner P., Peebo M., Lew D. P., Auckenthaler R., Pechère J. C. Comparative in-vitro activity of new quinolones against clinical isolates and resistant mutants. J Antimicrob Chemother. 1992 Jan;29(1):41–48. doi: 10.1093/jac/29.1.41. [DOI] [PubMed] [Google Scholar]
  35. Rubin J., Stoehr G., Yu V. L., Muder R. R., Matador A., Kamerer D. B. Efficacy of oral ciprofloxacin plus rifampin for treatment of malignant external otitis. Arch Otolaryngol Head Neck Surg. 1989 Sep;115(9):1063–1069. doi: 10.1001/archotol.1989.01860330053016. [DOI] [PubMed] [Google Scholar]
  36. Shalit I., Berger S. A., Gorea A., Frimerman H. Widespread quinolone resistance among methicillin-resistant Staphylococcus aureus isolates in a general hospital. Antimicrob Agents Chemother. 1989 Apr;33(4):593–594. doi: 10.1128/aac.33.4.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sörgel F., Seelmann R., Naber K., Metz R., Muth P. Metabolism of fleroxacin in man. J Antimicrob Chemother. 1988 Oct;22 (Suppl 500):169–178. doi: 10.1093/jac/22.supplement_d.169. [DOI] [PubMed] [Google Scholar]
  38. Venkatesan K. Pharmacokinetic drug interactions with rifampicin. Clin Pharmacokinet. 1992 Jan;22(1):47–65. doi: 10.2165/00003088-199222010-00005. [DOI] [PubMed] [Google Scholar]
  39. Waldvogel F. A. Use of quinolones for the treatment of osteomyelitis and septic arthritis. Rev Infect Dis. 1989 Jul-Aug;11 (Suppl 5):S1259–S1263. doi: 10.1093/clinids/11.supplement_5.s1259. [DOI] [PubMed] [Google Scholar]
  40. Waxman D. J., Attisano C., Guengerich F. P., Lapenson D. P. Human liver microsomal steroid metabolism: identification of the major microsomal steroid hormone 6 beta-hydroxylase cytochrome P-450 enzyme. Arch Biochem Biophys. 1988 Jun;263(2):424–436. doi: 10.1016/0003-9861(88)90655-8. [DOI] [PubMed] [Google Scholar]
  41. Weidekamm E., Portmann R., Suter K., Partos C., Dell D., Lücker P. W. Single- and multiple-dose pharmacokinetics of fleroxacin, a trifluorinated quinolone, in humans. Antimicrob Agents Chemother. 1987 Dec;31(12):1909–1914. doi: 10.1128/aac.31.12.1909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Weinstein M. P., Deeter R. G., Swanson K. A., Gross J. S. Crossover assessment of serum bactericidal activity and pharmacokinetics of ciprofloxacin alone and in combination in healthy elderly volunteers. Antimicrob Agents Chemother. 1991 Nov;35(11):2352–2358. doi: 10.1128/aac.35.11.2352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zak O., Scheld W. M., Sande M. A. Rifampin in experimental endocarditis due to Staphylococcus aureus in rabbits. Rev Infect Dis. 1983 Jul-Aug;5 (Suppl 3):S481–S490. doi: 10.1093/clinids/5.supplement_3.s481. [DOI] [PubMed] [Google Scholar]
  44. Zhiri A., Wellman-Bednawska M., Siest G. ELISA of 6-beta-hydroxycortisol in human urine: diurnal variations and effects of antiepileptic therapy. Clin Chim Acta. 1986 Jun 30;157(3):267–276. doi: 10.1016/0009-8981(86)90302-5. [DOI] [PubMed] [Google Scholar]
  45. Zhiri A., Wellman-Bednawska M., Siest G. Le 6-beta-hydroxycortisol: un reflet non invasif des enzymes du métabolisme des médicaments. Pathol Biol (Paris) 1987 Sep;35(7):1087–1093. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES