Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Nov;71(11):8167–8175. doi: 10.1128/jvi.71.11.8167-8175.1997

Phosphorylation within the amino-terminal acidic domain I of the phosphoprotein of vesicular stomatitis virus is required for transcription but not for replication.

A K Pattnaik 1, L Hwang 1, T Li 1, N Englund 1, M Mathur 1, T Das 1, A K Banerjee 1
PMCID: PMC192273  PMID: 9343167

Abstract

Phosphorylation by casein kinase II at three specific residues (S-60, T-62, and S-64) within the acidic domain I of the P protein of Indiana serotype vesicular stomatitis virus has been shown to be critical for in vitro transcription activity of the viral RNA polymerase (P-L) complex. To examine the role of phosphorylation of P protein in transcription as well as replication in vivo, we used a panel of mutant P proteins in which the phosphate acceptor sites in domain I were substituted with alanines or other amino acids. Analyses of the alanine-substituted mutant P proteins for the ability to support defective interfering RNA replication in vivo suggest that phosphorylation of these residues does not play a significant role in the replicative function of the P protein since these mutant P proteins supported replication at levels > or = 70% of the wild-type P-protein level. However, the transcription function of most of the mutant proteins in vivo was severely impaired (2 to 10% of the wild-type P-protein level). The level of transcription supported by the mutant P protein (P(60/62/64)) in which all phosphate acceptor sites have been mutated to alanines was at best 2 to 3% of that of the wild-type P protein. Increasing the amount of P(60/62/64) expression in transfected cells did not rescue significant levels of transcription. Substitution with other amino acids at these sites had various effects on replication and transcription. While substitution with threonine residues (P(TTT)) had no apparent effect on transcription (113% of the wild-type level) or replication (81% of the wild-type level), substitution with phenylalanine (P(FFF)) rendered the protein much less active in transcription (< 5%). Substitution with arginine residues led to significantly reduced activity in replication (6%), whereas glutamic acid substituted P protein (P(EEE)) supported replication (42%) and transcription (86%) well. In addition, the mutant P proteins that were defective in replication (P(RRR)) or transcription (P(60/62/64)) did not behave as transdominant repressors of replication or transcription when coexpressed with wild-type P protein. From these results, we conclude that phosphorylation of domain I residues plays a major role in in vivo transcription activity of the P protein, whereas in vivo replicative function of the protein does not require phosphorylation. These findings support the contention that different phosphorylated states of the P protein regulate the transcriptase and replicase functions of the polymerase protein, L.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banerjee A. K., Barik S. Gene expression of vesicular stomatitis virus genome RNA. Virology. 1992 Jun;188(2):417–428. doi: 10.1016/0042-6822(92)90495-b. [DOI] [PubMed] [Google Scholar]
  2. Banerjee A. K. Transcription and replication of rhabdoviruses. Microbiol Rev. 1987 Mar;51(1):66–87. doi: 10.1128/mr.51.1.66-87.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barik S., Banerjee A. K. Cloning and expression of the vesicular stomatitis virus phosphoprotein gene in Escherichia coli: analysis of phosphorylation status versus transcriptional activity. J Virol. 1991 Apr;65(4):1719–1726. doi: 10.1128/jvi.65.4.1719-1726.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barik S., Banerjee A. K. Phosphorylation by cellular casein kinase II is essential for transcriptional activity of vesicular stomatitis virus phosphoprotein P. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6570–6574. doi: 10.1073/pnas.89.14.6570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barik S., Banerjee A. K. Sequential phosphorylation of the phosphoprotein of vesicular stomatitis virus by cellular and viral protein kinases is essential for transcription activation. J Virol. 1992 Feb;66(2):1109–1118. doi: 10.1128/jvi.66.2.1109-1118.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barik S., McLean T., Dupuy L. C. Phosphorylation of Ser232 directly regulates the transcriptional activity of the P protein of human respiratory syncytial virus: phosphorylation of Ser237 may play an accessory role. Virology. 1995 Nov 10;213(2):405–412. doi: 10.1006/viro.1995.0013. [DOI] [PubMed] [Google Scholar]
  7. Bell J. C., Prevec L. Phosphorylation sites on phosphoprotein NS of vesicular stomatitis virus. J Virol. 1985 Jun;54(3):697–702. doi: 10.1128/jvi.54.3.697-702.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Byrappa S., Pan Y. B., Gupta K. C. Sendai virus P protein is constitutively phosphorylated at serine249: high phosphorylation potential of the P protein. Virology. 1996 Feb 1;216(1):228–234. doi: 10.1006/viro.1996.0052. [DOI] [PubMed] [Google Scholar]
  9. Canter D. M., Perrault J. Stabilization of vesicular stomatitis virus L polymerase protein by P protein binding: a small deletion in the C-terminal domain of L abrogates binding. Virology. 1996 May 15;219(2):376–386. doi: 10.1006/viro.1996.0263. [DOI] [PubMed] [Google Scholar]
  10. Chamberlain J. P. Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salicylate. Anal Biochem. 1979 Sep 15;98(1):132–135. doi: 10.1016/0003-2697(79)90716-4. [DOI] [PubMed] [Google Scholar]
  11. Chang T. L., Reiss C. S., Huang A. S. Inhibition of vesicular stomatitis virus RNA synthesis by protein hyperphosphorylation. J Virol. 1994 Aug;68(8):4980–4987. doi: 10.1128/jvi.68.8.4980-4987.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chattopadhyay D., Banerjee A. K. Phosphorylation within a specific domain of the phosphoprotein of vesicular stomatitis virus regulates transcription in vitro. Cell. 1987 May 8;49(3):407–414. doi: 10.1016/0092-8674(87)90293-5. [DOI] [PubMed] [Google Scholar]
  13. Chen J. L., Das T., Banerjee A. K. Phosphorylated states of vesicular stomatitis virus P protein in vitro and in vivo. Virology. 1997 Feb 17;228(2):200–212. doi: 10.1006/viro.1996.8401. [DOI] [PubMed] [Google Scholar]
  14. Clinton G. M., Huang A. S. Distribution of phosphoserine, phosphothreonine and phosphotyrosine in proteins of vesicular stomatitis virus. Virology. 1981 Jan 30;108(2):510–514. doi: 10.1016/0042-6822(81)90459-1. [DOI] [PubMed] [Google Scholar]
  15. Curran J., Pelet T., Kolakofsky D. An acidic activation-like domain of the Sendai virus P protein is required for RNA synthesis and encapsidation. Virology. 1994 Aug 1;202(2):875–884. doi: 10.1006/viro.1994.1409. [DOI] [PubMed] [Google Scholar]
  16. Das T., Gupta A. K., Sims P. W., Gelfand C. A., Jentoft J. E., Banerjee A. K. Role of cellular casein kinase II in the function of the phosphoprotein (P) subunit of RNA polymerase of vesicular stomatitis virus. J Biol Chem. 1995 Oct 13;270(41):24100–24107. doi: 10.1074/jbc.270.41.24100. [DOI] [PubMed] [Google Scholar]
  17. Das T., Schuster A., Schneider-Schaulies S., Banerjee A. K. Involvement of cellular casein kinase II in the phosphorylation of measles virus P protein: identification of phosphorylation sites. Virology. 1995 Aug 1;211(1):218–226. doi: 10.1006/viro.1995.1394. [DOI] [PubMed] [Google Scholar]
  18. De B. P., Gupta S., Gupta S., Banerjee A. K. Cellular protein kinase C isoform zeta regulates human parainfluenza virus type 3 replication. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5204–5208. doi: 10.1073/pnas.92.11.5204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Emerson S. U., Schubert M. Location of the binding domains for the RNA polymerase L and the ribonucleocapsid template within different halves of the NS phosphoprotein of vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5655–5659. doi: 10.1073/pnas.84.16.5655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Emerson S. U., Yu Y. Both NS and L proteins are required for in vitro RNA synthesis by vesicular stomatitis virus. J Virol. 1975 Jun;15(6):1348–1356. doi: 10.1128/jvi.15.6.1348-1356.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Fuerst T. R., Earl P. L., Moss B. Use of a hybrid vaccinia virus-T7 RNA polymerase system for expression of target genes. Mol Cell Biol. 1987 Jul;7(7):2538–2544. doi: 10.1128/mcb.7.7.2538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gao Y., Lenard J. Cooperative binding of multimeric phosphoprotein (P) of vesicular stomatitis virus to polymerase (L) and template: pathways of assembly. J Virol. 1995 Dec;69(12):7718–7723. doi: 10.1128/jvi.69.12.7718-7723.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gao Y., Lenard J. Multimerization and transcriptional activation of the phosphoprotein (P) of vesicular stomatitis virus by casein kinase-II. EMBO J. 1995 Mar 15;14(6):1240–1247. doi: 10.1002/j.1460-2075.1995.tb07107.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gupta A. K., Das T., Banerjee A. K. Casein kinase II is the P protein phosphorylating cellular kinase associated with the ribonucleoprotein complex of purified vesicular stomatitis virus. J Gen Virol. 1995 Feb;76(Pt 2):365–372. doi: 10.1099/0022-1317-76-2-365. [DOI] [PubMed] [Google Scholar]
  25. Hsu C. H., Kingsbury D. W. Constitutively phosphorylated residues in the NS protein of vesicular stomatitis virus. J Biol Chem. 1985 Jul 25;260(15):8990–8995. [PubMed] [Google Scholar]
  26. Hsu C. H., Kingsbury D. W. NS phosphoprotein of vesicular stomatitis virus: subspecies separated by electrophoresis and isoelectric focusing. J Virol. 1982 Apr;42(1):342–345. doi: 10.1128/jvi.42.1.342-345.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Isaac C. L., Keene J. D. RNA polymerase-associated interactions near template promoter sequences of defective interfering particles of vesicular stomatitis virus. J Virol. 1982 Jul;43(1):241–249. doi: 10.1128/jvi.43.1.241-249.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jackson R. L., Spadafora D., Perrault J. Hierarchal constitutive phosphorylation of the vesicular stomatitis virus P protein and lack of effect on P1 to P2 conversion. Virology. 1995 Dec 1;214(1):189–197. doi: 10.1006/viro.1995.9941. [DOI] [PubMed] [Google Scholar]
  29. Keene J. D., Thornton B. J., Emerson S. U. Sequence-specific contacts between the RNA polymerase of vesicular stomatitis virus and the leader RNA gene. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6191–6195. doi: 10.1073/pnas.78.10.6191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kingsford L., Emerson S. U. Transcriptional activities of different phosphorylated species of NS protein purified from vesicular stomatitis virions and cytoplasm of infected cells. J Virol. 1980 Mar;33(3):1097–1105. doi: 10.1128/jvi.33.3.1097-1105.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. La Ferla F. M., Peluso R. W. The 1:1 N-NS protein complex of vesicular stomatitis virus is essential for efficient genome replication. J Virol. 1989 Sep;63(9):3852–3857. doi: 10.1128/jvi.63.9.3852-3857.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  33. Laskey R. A. The use of intensifying screens or organic scintillators for visualizing radioactive molecules resolved by gel electrophoresis. Methods Enzymol. 1980;65(1):363–371. doi: 10.1016/s0076-6879(80)65047-2. [DOI] [PubMed] [Google Scholar]
  34. Lawson N. D., Stillman E. A., Whitt M. A., Rose J. K. Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4477–4481. doi: 10.1073/pnas.92.10.4477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Leamnson R. N., Reichmann M. E. The RNA of defective vesicular stomatitis virus particles in relation to viral cistrons. J Mol Biol. 1974 Jan 5;85(4):551–568. doi: 10.1016/0022-2836(74)90315-5. [DOI] [PubMed] [Google Scholar]
  36. Lehrach H., Diamond D., Wozney J. M., Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977 Oct 18;16(21):4743–4751. doi: 10.1021/bi00640a033. [DOI] [PubMed] [Google Scholar]
  37. Li T., Pattnaik A. K. Replication signals in the genome of vesicular stomatitis virus and its defective interfering particles: identification of a sequence element that enhances DI RNA replication. Virology. 1997 Jun 9;232(2):248–259. doi: 10.1006/viro.1997.8571. [DOI] [PubMed] [Google Scholar]
  38. Massey D. M., Deans N., Lenard J. Phosphorylation of NS protein by vesicular stomatitis virus nucleocapsids: lack of effect during RNA synthesis and separation of kinase from L protein. J Virol. 1990 Jul;64(7):3259–3264. doi: 10.1128/jvi.64.7.3259-3264.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Masters P. S., Banerjee A. K. Phosphoprotein NS of vesicular stomatitis virus: phosphorylated states and transcriptional activities of intracellular and virion forms. Virology. 1986 Oct 30;154(2):259–270. doi: 10.1016/0042-6822(86)90452-6. [DOI] [PubMed] [Google Scholar]
  40. Mazumder B., Adhikary G., Barik S. Bacterial expression of human respiratory syncytial viral phosphoprotein P and identification of Ser237 as the site of phosphorylation by cellular casein kinase II. Virology. 1994 Nov 15;205(1):93–103. doi: 10.1006/viro.1994.1623. [DOI] [PubMed] [Google Scholar]
  41. Mazumder B., Barik S. Requirement of casein kinase II-mediated phosphorylation for the transcriptional activity of human respiratory syncytial viral phosphoprotein P: transdominant negative phenotype of phosphorylation-defective P mutants. Virology. 1994 Nov 15;205(1):104–111. doi: 10.1006/viro.1994.1624. [DOI] [PubMed] [Google Scholar]
  42. Naito S., Ishihama A. Function and structure of RNA polymerase from vesicular stomatitis virus. J Biol Chem. 1976 Jul 25;251(14):4307–4314. [PubMed] [Google Scholar]
  43. Pattnaik A. K., Ball L. A., LeGrone A. W., Wertz G. W. Infectious defective interfering particles of VSV from transcripts of a cDNA clone. Cell. 1992 Jun 12;69(6):1011–1020. doi: 10.1016/0092-8674(92)90619-n. [DOI] [PubMed] [Google Scholar]
  44. Pattnaik A. K., Wertz G. W. Replication and amplification of defective interfering particle RNAs of vesicular stomatitis virus in cells expressing viral proteins from vectors containing cloned cDNAs. J Virol. 1990 Jun;64(6):2948–2957. doi: 10.1128/jvi.64.6.2948-2957.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Peluso R. W., Moyer S. A. Viral proteins required for the in vitro replication of vesicular stomatitis virus defective interfering particle genome RNA. Virology. 1988 Feb;162(2):369–376. doi: 10.1016/0042-6822(88)90477-1. [DOI] [PubMed] [Google Scholar]
  46. Richardson J. C., Peluso R. W. Inhibition of VSV genome RNA replication but not transcription by monoclonal antibodies specific for the viral P protein. Virology. 1996 Feb 1;216(1):26–34. doi: 10.1006/viro.1996.0031. [DOI] [PubMed] [Google Scholar]
  47. Spadafora D., Canter D. M., Jackson R. L., Perrault J. Constitutive phosphorylation of the vesicular stomatitis virus P protein modulates polymerase complex formation but is not essential for transcription or replication. J Virol. 1996 Jul;70(7):4538–4548. doi: 10.1128/jvi.70.7.4538-4548.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Takacs A. M., Barik S., Das T., Banerjee A. K. Phosphorylation of specific serine residues within the acidic domain of the phosphoprotein of vesicular stomatitis virus regulates transcription in vitro. J Virol. 1992 Oct;66(10):5842–5848. doi: 10.1128/jvi.66.10.5842-5848.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Unger J. T., Reichmann M. E. RNA synthesis in temperature-sensitive mutants of vesicular stomatitis virus. J Virol. 1973 Sep;12(3):570–578. doi: 10.1128/jvi.12.3.570-578.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Villanueva N., Navarro J., Méndez E., García-Albert I. Identification of a protein kinase involved in the phosphorylation of the C-terminal region of human respiratory syncytial virus P protein. J Gen Virol. 1994 Mar;75(Pt 3):555–565. doi: 10.1099/0022-1317-75-3-555. [DOI] [PubMed] [Google Scholar]
  51. Whelan S. P., Ball L. A., Barr J. N., Wertz G. T. Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8388–8392. doi: 10.1073/pnas.92.18.8388. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES