Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Nov;71(11):8230–8236. doi: 10.1128/jvi.71.11.8230-8236.1997

Resistance to a drug blocking human immunodeficiency virus type 1 entry (RPR103611) is conferred by mutations in gp41.

B Labrosse 1, O Pleskoff 1, N Sol 1, C Jones 1, Y Hénin 1, M Alizon 1
PMCID: PMC192280  PMID: 9343174

Abstract

A triterpene derived from betulinic acid (RPR103611) blocks human immunodeficiency virus type 1 (HIV-1) infection and fusion of CD4+ cells with cells expressing HIV-1 envelope proteins (gp120 and gp41), suggesting an effect on virus entry. This compound did not block infection by a subtype D HIV-1 strain (NDK) or cell-cell fusion mediated by the NDK envelope proteins. The genetic basis of drug resistance was therefore addressed by testing envelope chimeras derived from NDK and a drug-sensitive HIV-1 strain (LAI, subtype B). A drug-resistant phenotype was observed for all chimeras bearing the ectodomain of NDK gp41, while the origins of gp120 and of the membrane anchor and cytoplasmic domains of gp41 had no apparent role. The envelope gene of a LAI variant, fully resistant to the antiviral effect of RPR103611, was cloned and sequenced. Its product differed from the parental sequence at two positions in gp41, with changes of arginine 22 to alanine (R22A) and isoleucine 84 to serine (I84S), the gp120 being identical. In the context of LAI gp41, the I84S substitution was sufficient for drug resistance. Therefore, in two different systems, differences in gp41 were associated with sensitivity or resistance to RPR103611. Modifications of gp41 can affect the quaternary structure of gp120 and gp41 and the accessibility of gp120 to antiviral agents such as neutralizing antibodies. However, a direct effect of RPR103611 on a gp41 target must also be envisioned, in agreement with the blocking of apparently late steps of HIV-1 entry. This compound could be a valuable tool for structure-function studies of gp41.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batinić D., Robey F. A. The V3 region of the envelope glycoprotein of human immunodeficiency virus type 1 binds sulfated polysaccharides and CD4-derived synthetic peptides. J Biol Chem. 1992 Apr 5;267(10):6664–6671. [PubMed] [Google Scholar]
  2. Bullough P. A., Hughson F. M., Skehel J. J., Wiley D. C. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature. 1994 Sep 1;371(6492):37–43. doi: 10.1038/371037a0. [DOI] [PubMed] [Google Scholar]
  3. Cao J., Bergeron L., Helseth E., Thali M., Repke H., Sodroski J. Effects of amino acid changes in the extracellular domain of the human immunodeficiency virus type 1 gp41 envelope glycoprotein. J Virol. 1993 May;67(5):2747–2755. doi: 10.1128/jvi.67.5.2747-2755.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carr C. M., Kim P. S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell. 1993 May 21;73(4):823–832. doi: 10.1016/0092-8674(93)90260-w. [DOI] [PubMed] [Google Scholar]
  5. Chan D. C., Fass D., Berger J. M., Kim P. S. Core structure of gp41 from the HIV envelope glycoprotein. Cell. 1997 Apr 18;89(2):263–273. doi: 10.1016/s0092-8674(00)80205-6. [DOI] [PubMed] [Google Scholar]
  6. Clavel F., Charneau P. Fusion from without directed by human immunodeficiency virus particles. J Virol. 1994 Feb;68(2):1179–1185. doi: 10.1128/jvi.68.2.1179-1185.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. D'Souza M. P., Harden V. A. Chemokines and HIV-1 second receptors. Confluence of two fields generates optimism in AIDS research. Nat Med. 1996 Dec;2(12):1293–1300. doi: 10.1038/nm1296-1293. [DOI] [PubMed] [Google Scholar]
  8. Delwart E. L., Mosialos G., Gilmore T. Retroviral envelope glycoproteins contain a "leucine zipper"-like repeat. AIDS Res Hum Retroviruses. 1990 Jun;6(6):703–706. doi: 10.1089/aid.1990.6.703. [DOI] [PubMed] [Google Scholar]
  9. Dimitrov D. S., Blumenthal R. Photoinactivation and kinetics of membrane fusion mediated by the human immunodeficiency virus type 1 envelope glycoprotein. J Virol. 1994 Mar;68(3):1956–1961. doi: 10.1128/jvi.68.3.1956-1961.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dimitrov D. S., Golding H., Blumenthal R. Initial stages of HIV-1 envelope glycoprotein-mediated cell fusion monitored by a new assay based on redistribution of fluorescent dyes. AIDS Res Hum Retroviruses. 1991 Oct;7(10):799–805. doi: 10.1089/aid.1991.7.799. [DOI] [PubMed] [Google Scholar]
  11. Dimitrov D. S., Willey R. L., Martin M. A., Blumenthal R. Kinetics of HIV-1 interactions with sCD4 and CD4+ cells: implications for inhibition of virus infection and initial steps of virus entry into cells. Virology. 1992 Apr;187(2):398–406. doi: 10.1016/0042-6822(92)90441-q. [DOI] [PubMed] [Google Scholar]
  12. Gallaher W. R., Ball J. M., Garry R. F., Griffin M. C., Montelaro R. C. A general model for the transmembrane proteins of HIV and other retroviruses. AIDS Res Hum Retroviruses. 1989 Aug;5(4):431–440. doi: 10.1089/aid.1989.5.431. [DOI] [PubMed] [Google Scholar]
  13. Lu M., Blacklow S. C., Kim P. S. A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Biol. 1995 Dec;2(12):1075–1082. doi: 10.1038/nsb1295-1075. [DOI] [PubMed] [Google Scholar]
  14. Mayaux J. F., Bousseau A., Pauwels R., Huet T., Hénin Y., Dereu N., Evers M., Soler F., Poujade C., De Clercq E. Triterpene derivatives that block entry of human immunodeficiency virus type 1 into cells. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3564–3568. doi: 10.1073/pnas.91.9.3564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moore J. P., Trkola A., Dragic T. Co-receptors for HIV-1 entry. Curr Opin Immunol. 1997 Aug;9(4):551–562. doi: 10.1016/s0952-7915(97)80110-0. [DOI] [PubMed] [Google Scholar]
  16. O'Brien W. A., Sumner-Smith M., Mao S. H., Sadeghi S., Zhao J. Q., Chen I. S. Anti-human immunodeficiency virus type 1 activity of an oligocationic compound mediated via gp120 V3 interactions. J Virol. 1996 May;70(5):2825–2831. doi: 10.1128/jvi.70.5.2825-2831.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Okada T., Gurney M. E. Single basic amino acid substitutions at position 302 or 320 in the V3 domain of HIV type 1 are not sufficient to alter the antiviral activity of dextran sulfate and heparin. AIDS Res Hum Retroviruses. 1995 May;11(5):571–575. doi: 10.1089/aid.1995.11.571. [DOI] [PubMed] [Google Scholar]
  18. Peden K., Emerman M., Montagnier L. Changes in growth properties on passage in tissue culture of viruses derived from infectious molecular clones of HIV-1LAI, HIV-1MAL, and HIV-1ELI. Virology. 1991 Dec;185(2):661–672. doi: 10.1016/0042-6822(91)90537-l. [DOI] [PubMed] [Google Scholar]
  19. Pleskoff O., Seman M., Alizon M. Amphotericin B derivative blocks human immunodeficiency virus type 1 entry after CD4 binding: effect on virus-cell fusion but not on cell-cell fusion. J Virol. 1995 Jan;69(1):570–574. doi: 10.1128/jvi.69.1.570-574.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pleskoff O., Sol N., Labrosse B., Alizon M. Human immunodeficiency virus strains differ in their ability to infect CD4+ cells expressing the rat homolog of CXCR-4 (fusin). J Virol. 1997 Apr;71(4):3259–3262. doi: 10.1128/jvi.71.4.3259-3262.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pleskoff O., Sol N., Marrakchi H., Serlin M., Seman M., Alizon M. Possible role of the V3 domain of gp120 in resistance to an amphotericin B derivative (MS8209) blocking human immunodeficiency virus entry. J Virol. 1996 Nov;70(11):8247–8251. doi: 10.1128/jvi.70.11.8247-8251.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Reitz M. S., Jr, Wilson C., Naugle C., Gallo R. C., Robert-Guroff M. Generation of a neutralization-resistant variant of HIV-1 is due to selection for a point mutation in the envelope gene. Cell. 1988 Jul 1;54(1):57–63. doi: 10.1016/0092-8674(88)90179-1. [DOI] [PubMed] [Google Scholar]
  23. Rey-Cuille M. A., Galabru J., Laurent-Crawford A., Krust B., Montagnier L., Hovanessian A. G. HIV-2 EHO isolate has a divergent envelope gene and induces single cell killing by apoptosis. Virology. 1994 Jul;202(1):471–476. doi: 10.1006/viro.1994.1364. [DOI] [PubMed] [Google Scholar]
  24. Ryan-Graham M. A., Peden K. W. Both virus and host components are important for the manifestation of a Nef- phenotype in HIV-1 and HIV-2. Virology. 1995 Oct 20;213(1):158–168. doi: 10.1006/viro.1995.1556. [DOI] [PubMed] [Google Scholar]
  25. Sattentau Q. J. Neutralization of HIV-1 by antibody. Curr Opin Immunol. 1996 Aug;8(4):540–545. doi: 10.1016/s0952-7915(96)80044-6. [DOI] [PubMed] [Google Scholar]
  26. Sattentau Q. J., Zolla-Pazner S., Poignard P. Epitope exposure on functional, oligomeric HIV-1 gp41 molecules. Virology. 1995 Jan 10;206(1):713–717. doi: 10.1016/s0042-6822(95)80094-8. [DOI] [PubMed] [Google Scholar]
  27. Schols D., Baba M., Pauwels R., Desmyter J., De Clercq E. Specific interaction of aurintricarboxylic acid with the human immunodeficiency virus/CD4 cell receptor. Proc Natl Acad Sci U S A. 1989 May;86(9):3322–3326. doi: 10.1073/pnas.86.9.3322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schwartz O., Alizon M., Heard J. M., Danos O. Impairment of T cell receptor-dependent stimulation in CD4+ lymphocytes after contact with membrane-bound HIV-1 envelope glycoprotein. Virology. 1994 Jan;198(1):360–365. doi: 10.1006/viro.1994.1042. [DOI] [PubMed] [Google Scholar]
  29. Signoret N., Poignard P., Blanc D., Sattentau Q. J. Human and simian immunodeficiency viruses: virus-receptor interactions. Trends Microbiol. 1993 Dec;1(9):328–333. doi: 10.1016/0966-842x(93)90072-y. [DOI] [PubMed] [Google Scholar]
  30. Simmons G., Wilkinson D., Reeves J. D., Dittmar M. T., Beddows S., Weber J., Carnegie G., Desselberger U., Gray P. W., Weiss R. A. Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. J Virol. 1996 Dec;70(12):8355–8360. doi: 10.1128/jvi.70.12.8355-8360.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Spire B., Sire J., Zachar V., Rey F., Barré-Sinoussi F., Galibert F., Hampe A., Chermann J. C. Nucleotide sequence of HIV1-NDK: a highly cytopathic strain of the human immunodeficiency virus. Gene. 1989 Sep 30;81(2):275–284. doi: 10.1016/0378-1119(89)90188-1. [DOI] [PubMed] [Google Scholar]
  32. Trkola A., Dragic T., Arthos J., Binley J. M., Olson W. C., Allaway G. P., Cheng-Mayer C., Robinson J., Maddon P. J., Moore J. P. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature. 1996 Nov 14;384(6605):184–187. doi: 10.1038/384184a0. [DOI] [PubMed] [Google Scholar]
  33. Weissenhorn W., Dessen A., Harrison S. C., Skehel J. J., Wiley D. C. Atomic structure of the ectodomain from HIV-1 gp41. Nature. 1997 May 22;387(6631):426–430. doi: 10.1038/387426a0. [DOI] [PubMed] [Google Scholar]
  34. Wild C. T., Shugars D. C., Greenwell T. K., McDanal C. B., Matthews T. J. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9770–9774. doi: 10.1073/pnas.91.21.9770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wild C., Oas T., McDanal C., Bolognesi D., Matthews T. A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10537–10541. doi: 10.1073/pnas.89.21.10537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wu L., Gerard N. P., Wyatt R., Choe H., Parolin C., Ruffing N., Borsetti A., Cardoso A. A., Desjardin E., Newman W. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature. 1996 Nov 14;384(6605):179–183. doi: 10.1038/384179a0. [DOI] [PubMed] [Google Scholar]
  37. Wyatt J. R., Vickers T. A., Roberson J. L., Buckheit R. W., Jr, Klimkait T., DeBaets E., Davis P. W., Rayner B., Imbach J. L., Ecker D. J. Combinatorially selected guanosine-quartet structure is a potent inhibitor of human immunodeficiency virus envelope-mediated cell fusion. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1356–1360. doi: 10.1073/pnas.91.4.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. de Vreese K., Kofler-Mongold V., Leutgeb C., Weber V., Vermeire K., Schacht S., Anné J., de Clercq E., Datema R., Werner G. The molecular target of bicyclams, potent inhibitors of human immunodeficiency virus replication. J Virol. 1996 Feb;70(2):689–696. doi: 10.1128/jvi.70.2.689-696.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES