Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Nov;71(11):8357–8361. doi: 10.1128/jvi.71.11.8357-8361.1997

Arginine-glycine-aspartic acid-specific binding by foot-and-mouth disease viruses to the purified integrin alpha(v)beta3 in vitro.

T Jackson 1, A Sharma 1, R A Ghazaleh 1, W E Blakemore 1, F M Ellard 1, D L Simmons 1, J W Newman 1, D I Stuart 1, A M King 1
PMCID: PMC192296  PMID: 9343190

Abstract

The integrin alpha(v)beta3 has been shown to act as the receptor for internalization of foot-and-mouth disease virus (FMDV) (A12), with attachment being through a highly conserved RGD motif located on the G-H loop of viral capsid protein VP1. In addition, however, we have recently shown that efficient infection of culture-grown cells by FMDV (O1BFS) requires binding to cell surface heparan sulfate. In this study, we have used a solid-phase receptor binding assay to characterize the binding by FMDV to purified alpha(v)beta3 in the absence of heparan sulfate and other cell surface components. In this assay, FMDV (O1BFS) successfully replicated authentic ligand binding by cellular alpha(v)beta3 in terms of its high affinity, dependence on divalent cations, and activation by manganese ions. Virus binding to this preparation of alpha(v)beta3 was exquisitely sensitive to competition by short RGD-containing peptides (50% inhibition at < 10(-8) M peptide), and this inhibition was highly sequence specific, with the equivalent RGE peptide being at least 10(4) fold less effective as a competitor. Representative viruses of the other six serotypes of FMDV bound to alpha(v)beta3 in a similar RGD-specific manner, although significant differences in sensitivity to RGD peptides suggest that the affinity of the different FMDV serotypes for alpha(v)beta3 is influenced, in part, by the variable amino acid residues in the VP1 G-H loop on either side of the RGD.

Full Text

The Full Text of this article is available as a PDF (484.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acharya R., Fry E., Stuart D., Fox G., Rowlands D., Brown F. The three-dimensional structure of foot-and-mouth disease virus at 2.9 A resolution. Nature. 1989 Feb 23;337(6209):709–716. doi: 10.1038/337709a0. [DOI] [PubMed] [Google Scholar]
  2. Baxt B., Becker Y. The effect of peptides containing the arginine-glycine-aspartic acid sequence on the adsorption of foot-and-mouth disease virus to tissue culture cells. Virus Genes. 1990 Jun;4(1):73–83. doi: 10.1007/BF00308567. [DOI] [PubMed] [Google Scholar]
  3. Belsham G. J. Distinctive features of foot-and-mouth disease virus, a member of the picornavirus family; aspects of virus protein synthesis, protein processing and structure. Prog Biophys Mol Biol. 1993;60(3):241–260. doi: 10.1016/0079-6107(93)90016-D. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bergelson J. M., Shepley M. P., Chan B. M., Hemler M. E., Finberg R. W. Identification of the integrin VLA-2 as a receptor for echovirus 1. Science. 1992 Mar 27;255(5052):1718–1720. doi: 10.1126/science.1553561. [DOI] [PubMed] [Google Scholar]
  5. Bergelson J. M., St John N., Kawaguchi S., Chan M., Stubdal H., Modlin J., Finberg R. W. Infection by echoviruses 1 and 8 depends on the alpha 2 subunit of human VLA-2. J Virol. 1993 Nov;67(11):6847–6852. doi: 10.1128/jvi.67.11.6847-6852.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berinstein A., Roivainen M., Hovi T., Mason P. W., Baxt B. Antibodies to the vitronectin receptor (integrin alpha V beta 3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. J Virol. 1995 Apr;69(4):2664–2666. doi: 10.1128/jvi.69.4.2664-2666.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bolwell C., Brown A. L., Barnett P. V., Campbell R. O., Clarke B. E., Parry N. R., Ouldridge E. J., Brown F., Rowlands D. J. Host cell selection of antigenic variants of foot-and-mouth disease virus. J Gen Virol. 1989 Jan;70(Pt 1):45–57. doi: 10.1099/0022-1317-70-1-45. [DOI] [PubMed] [Google Scholar]
  8. Booth J. C., Pay T. W. Haemagglutination by type SAT 2 foot-and-mouth disease viruses. J Gen Virol. 1973 Jun;19(3):397–404. doi: 10.1099/0022-1317-19-3-397. [DOI] [PubMed] [Google Scholar]
  9. Carrillo E. C., Giachetti C., Campos R. H. Effect of lysosomotropic agents on the foot-and-mouth disease virus replication. Virology. 1984 Jun;135(2):542–545. doi: 10.1016/0042-6822(84)90208-3. [DOI] [PubMed] [Google Scholar]
  10. Curry S., Abrams C. C., Fry E., Crowther J. C., Belsham G. J., Stuart D. I., King A. M. Viral RNA modulates the acid sensitivity of foot-and-mouth disease virus capsids. J Virol. 1995 Jan;69(1):430–438. doi: 10.1128/jvi.69.1.430-438.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dedhar S., Hannigan G. E. Integrin cytoplasmic interactions and bidirectional transmembrane signalling. Curr Opin Cell Biol. 1996 Oct;8(5):657–669. doi: 10.1016/s0955-0674(96)80107-4. [DOI] [PubMed] [Google Scholar]
  12. Diamond M. S., Springer T. A. The dynamic regulation of integrin adhesiveness. Curr Biol. 1994 Jun 1;4(6):506–517. doi: 10.1016/s0960-9822(00)00111-1. [DOI] [PubMed] [Google Scholar]
  13. Dransfield I., Cabañas C., Craig A., Hogg N. Divalent cation regulation of the function of the leukocyte integrin LFA-1. J Cell Biol. 1992 Jan;116(1):219–226. doi: 10.1083/jcb.116.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Evander M., Frazer I. H., Payne E., Qi Y. M., Hengst K., McMillan N. A. Identification of the alpha6 integrin as a candidate receptor for papillomaviruses. J Virol. 1997 Mar;71(3):2449–2456. doi: 10.1128/jvi.71.3.2449-2456.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Felding-Habermann B., Cheresh D. A. Vitronectin and its receptors. Curr Opin Cell Biol. 1993 Oct;5(5):864–868. doi: 10.1016/0955-0674(93)90036-p. [DOI] [PubMed] [Google Scholar]
  16. Forss S., Strebel K., Beck E., Schaller H. Nucleotide sequence and genome organization of foot-and-mouth disease virus. Nucleic Acids Res. 1984 Aug 24;12(16):6587–6601. doi: 10.1093/nar/12.16.6587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fox G., Parry N. R., Barnett P. V., McGinn B., Rowlands D. J., Brown F. The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). J Gen Virol. 1989 Mar;70(Pt 3):625–637. doi: 10.1099/0022-1317-70-3-625. [DOI] [PubMed] [Google Scholar]
  18. Hernández J., Valero M. L., Andreu D., Domingo E., Mateu M. G. Antibody and host cell recognition of foot-and-mouth disease virus (serotype C) cleaved at the Arg-Gly-Asp (RGD) motif: a structural interpretation. J Gen Virol. 1996 Feb;77(Pt 2):257–264. doi: 10.1099/0022-1317-77-2-257. [DOI] [PubMed] [Google Scholar]
  19. Hu D. D., Hoyer J. R., Smith J. W. Ca2+ suppresses cell adhesion to osteopontin by attenuating binding affinity for integrin alpha v beta 3. J Biol Chem. 1995 Apr 28;270(17):9917–9925. doi: 10.1074/jbc.270.17.9917. [DOI] [PubMed] [Google Scholar]
  20. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  21. Jackson T., Ellard F. M., Ghazaleh R. A., Brookes S. M., Blakemore W. E., Corteyn A. H., Stuart D. I., Newman J. W., King A. M. Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J Virol. 1996 Aug;70(8):5282–5287. doi: 10.1128/jvi.70.8.5282-5287.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kjellén L., Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem. 1991;60:443–475. doi: 10.1146/annurev.bi.60.070191.002303. [DOI] [PubMed] [Google Scholar]
  23. Kunicki T. J., Annis D. S., Felding-Habermann B. Molecular determinants of arg-gly-asp ligand specificity for beta3 integrins. J Biol Chem. 1997 Feb 14;272(7):4103–4107. doi: 10.1074/jbc.272.7.4103. [DOI] [PubMed] [Google Scholar]
  24. Lee J. O., Bankston L. A., Arnaout M. A., Liddington R. C. Two conformations of the integrin A-domain (I-domain): a pathway for activation? Structure. 1995 Dec 15;3(12):1333–1340. doi: 10.1016/s0969-2126(01)00271-4. [DOI] [PubMed] [Google Scholar]
  25. Leippert M., Beck E., Weiland F., Pfaff E. Point mutations within the betaG-betaH loop of foot-and-mouth disease virus O1K affect virus attachment to target cells. J Virol. 1997 Feb;71(2):1046–1051. doi: 10.1128/jvi.71.2.1046-1051.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mason P. W., Baxt B., Brown F., Harber J., Murdin A., Wimmer E. Antibody-complexed foot-and-mouth disease virus, but not poliovirus, can infect normally insusceptible cells via the Fc receptor. Virology. 1993 Feb;192(2):568–577. doi: 10.1006/viro.1993.1073. [DOI] [PubMed] [Google Scholar]
  27. Mason P. W., Rieder E., Baxt B. RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1932–1936. doi: 10.1073/pnas.91.5.1932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mateu M. G., Valero M. L., Andreu D., Domingo E. Systematic replacement of amino acid residues within an Arg-Gly-Asp-containing loop of foot-and-mouth disease virus and effect on cell recognition. J Biol Chem. 1996 May 31;271(22):12814–12819. doi: 10.1074/jbc.271.22.12814. [DOI] [PubMed] [Google Scholar]
  29. Montgomery A. M., Becker J. C., Siu C. H., Lemmon V. P., Cheresh D. A., Pancook J. D., Zhao X., Reisfeld R. A. Human neural cell adhesion molecule L1 and rat homologue NILE are ligands for integrin alpha v beta 3. J Cell Biol. 1996 Feb;132(3):475–485. doi: 10.1083/jcb.132.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mould A. P., Akiyama S. K., Humphries M. J. Regulation of integrin alpha 5 beta 1-fibronectin interactions by divalent cations. Evidence for distinct classes of binding sites for Mn2+, Mg2+, and Ca2+. J Biol Chem. 1995 Nov 3;270(44):26270–26277. doi: 10.1074/jbc.270.44.26270. [DOI] [PubMed] [Google Scholar]
  31. Orlando R. A., Cheresh D. A. Arginine-glycine-aspartic acid binding leading to molecular stabilization between integrin alpha v beta 3 and its ligand. J Biol Chem. 1991 Oct 15;266(29):19543–19550. [PubMed] [Google Scholar]
  32. Pfaff M., Tangemann K., Müller B., Gurrath M., Müller G., Kessler H., Timpl R., Engel J. Selective recognition of cyclic RGD peptides of NMR defined conformation by alpha IIb beta 3, alpha V beta 3, and alpha 5 beta 1 integrins. J Biol Chem. 1994 Aug 12;269(32):20233–20238. [PubMed] [Google Scholar]
  33. Rieder E., Baxt B., Mason P. W. Animal-derived antigenic variants of foot-and-mouth disease virus type A12 have low affinity for cells in culture. J Virol. 1994 Aug;68(8):5296–5299. doi: 10.1128/jvi.68.8.5296-5299.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roivainen M., Piirainen L., Hovi T., Virtanen I., Riikonen T., Heino J., Hyypiä T. Entry of coxsackievirus A9 into host cells: specific interactions with alpha v beta 3 integrin, the vitronectin receptor. Virology. 1994 Sep;203(2):357–365. doi: 10.1006/viro.1994.1494. [DOI] [PubMed] [Google Scholar]
  35. Scarborough R. M., Rose J. W., Naughton M. A., Phillips D. R., Nannizzi L., Arfsten A., Campbell A. M., Charo I. F. Characterization of the integrin specificities of disintegrins isolated from American pit viper venoms. J Biol Chem. 1993 Jan 15;268(2):1058–1065. [PubMed] [Google Scholar]
  36. Schwartz M. A., Schaller M. D., Ginsberg M. H. Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol. 1995;11:549–599. doi: 10.1146/annurev.cb.11.110195.003001. [DOI] [PubMed] [Google Scholar]
  37. Smith J. W., Piotrowicz R. S., Mathis D. A mechanism for divalent cation regulation of beta 3-integrins. J Biol Chem. 1994 Jan 14;269(2):960–967. [PubMed] [Google Scholar]
  38. Sobrino F., Martinez M. A., Carrillo C., Beck E. Antigenic variation of foot-and-mouth disease virus of serotype C during propagation in the field is mainly restricted to only one structural protein (VP1). Virus Res. 1989 Dec;14(4):273–280. doi: 10.1016/0168-1702(89)90021-x. [DOI] [PubMed] [Google Scholar]
  39. Spier R. E., Murdin A., Whittle C. J. The attachment of the foot-and-mouth disease virus Asia I Iran 1/73 to BHK suspension cells does not require virus specific cell receptors. Arch Virol. 1983;77(2-4):97–108. doi: 10.1007/BF01309259. [DOI] [PubMed] [Google Scholar]
  40. Stanway G., Kalkkinen N., Roivainen M., Ghazi F., Khan M., Smyth M., Meurman O., Hyypiä T. Molecular and biological characteristics of echovirus 22, a representative of a new picornavirus group. J Virol. 1994 Dec;68(12):8232–8238. doi: 10.1128/jvi.68.12.8232-8238.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Strohmaier K., Franze R., Adam K. H. Location and characterization of the antigenic portion of the FMDV immunizing protein. J Gen Virol. 1982 Apr;59(Pt 2):295–306. doi: 10.1099/0022-1317-59-2-295. [DOI] [PubMed] [Google Scholar]
  42. Tran Van Nhieu G., Isberg R. R. Bacterial internalization mediated by beta 1 chain integrins is determined by ligand affinity and receptor density. EMBO J. 1993 May;12(5):1887–1895. doi: 10.1002/j.1460-2075.1993.tb05837.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wickham T. J., Mathias P., Cheresh D. A., Nemerow G. R. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell. 1993 Apr 23;73(2):309–319. doi: 10.1016/0092-8674(93)90231-e. [DOI] [PubMed] [Google Scholar]
  44. Xie Q. C., McCahon D., Crowther J. R., Belsham G. J., McCullough K. C. Neutralization of foot-and-mouth disease virus can be mediated through any of at least three separate antigenic sites. J Gen Virol. 1987 Jun;68(Pt 6):1637–1647. doi: 10.1099/0022-1317-68-6-1637. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES